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Glacial cycles drive variations in the
production of oceanic crust
John W. Crowley,1,2* Richard F. Katz,1† Peter Huybers,2

Charles H. Langmuir,2 Sung-Hyun Park3†

Glacial cycles redistribute water between oceans and continents, causing pressure
changes in the upper mantle, with consequences for the melting of Earth’s interior.
Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of
mid-ocean ridge dynamics that include melt transport predict temporal variations in
crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic
ridge shows statistically significant spectral energy near the Milankovitch periods of
23, 41, and 100 thousand years, which is consistent with model predictions. These results
suggest that abyssal hills, one of the most common bathymetric features on
Earth, record the magmatic response to changes in sea level. The models and data support
a link between glacial cycles at the surface and mantle melting at depth, recorded in
the bathymetric fabric of the sea floor.

T
he bathymetry of the sea floor has strik-
ingly regular variations around interme-
diate and fast-spreading ocean ridges. Parallel
to the ridge are long, linear features with
quasi-regular spacing called abyssal hills

(1). High-resolution mapping of the sea floor
over the past few decades (2–4) has shown that
these hills are among the most common topo-
graphic features of the planet, populating the sea
floor over ~50,000 km of ridge length. Hypothe-
sized models for these features include exten-
sional faulting parallel to the ridge (3), variations
in the magmatic budget of ridge volcanoes (5),
and variation in mantle melting under ridges
owing to sea-level change associated with glacial
cycles (6). This latter model stems from the fact
that glacial-interglacial variations transfer ~5 ×
1019 kg of water between the oceans and the
continents. Thismass redistribution translates to
sea-level variations of ~100 m and modifies the
lithostatic pressurebeneath the entireocean.Because
mantle melting beneath ridges is driven by depres-
surization, ocean ridge volcanism should respond
to sea-level changes, potentially leading to changes
in the thickness and elevation of ocean crust.
Plate spreading atmid-ocean ridges drawsman-

tle flow upward beneath the ridge; rising parcels
of mantle experience decreasing pressure and
hence decreasing melting point, causing partial
melting. Mantle upwelling rates are ~3 cm/year
on average, whereas sea-level change during the
last deglaciation was at a mean rate of 1 cm/year
over 10 thousand years (ky). Because water has
one third the density of rock, sea-level changes
would modify the depressurization rate associ-
ated with upwelling by T10%, with correspond-
ing effects on the rate ofmelt production.Mantle

upwelling rate scales with the mid-ocean ridge
spreading rate, but the rate of sea-level change
over the global mid-ocean ridge system is rough-
ly uniform. On this basis, previous workers in-
ferred that the relative effect of sea-level change
should scale inversely with spreading rate, reach-
ing a maximum at the slowest rates (6). An
elaboration of this model with parameterized
melt transport gave a similar scaling (7).
To test these qualitative inferences, we inves-

tigated the crustal response to sea-level change

using a model that computes mantle flow, ther-
mal structure, melting, and pathways of melt
transport. Themodel is based on canonical state-
ments of conservation of mass, momentum, and
energy for partially molten mantle (8, 9) and
has previously been used to simulate mid-ocean
ridge dynamics with homogeneous (10) and
heterogeneous (11) mantle composition. It pre-
dicts time scales of melt transport that are
consistent with those estimated from 230Th
disequilibium in young lavas (12). In the pre-
sent work, the model is used to predict crustal
thickness time series arising from changes in
sea level (Fig. 1) (13).
A suite of nine model runs for three perme-

ability scales and three spreading rates was
driven over a 5-million-year period by using a
Plio-Pleistocene sea-level reconstruction (14). Crus-
tal curves from simulations with larger permeabil-
ity and faster spreading rate contain relatively
more high-frequency content than those of lower
permeability and slower-spreading-rate runs (Fig.
1). Our model results contradict the previous
scaling arguments (6, 7) in not showing a simple
decrease in the sea-level effect on ridge magma-
tism with increasing spreading rate.
To better understand these numerical results,

we carried out an analysis of leading-order pro-
cesses using a reduced complexity model. This
model provides a solution for crustal thickness
response to changes in sea level, approximating
the results of the full numerical model, but with
greater transparency. Assuming that all melt
produced by sea-level change is focused to the
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Fig. 1. Simulated bathymetric relief driven by Plio-Pleistocene sea-level variation. (A) Imposed sea-
level variation [black, from (14)] and predicted bathymetric relief (color) for the past 1.25million years from
simulations at three half-spreading rates U0 and three permeability levels K0. Isostatic compensation is
assumed to scale the amplitude of crustal thickness variation by 6/23 to give bathymetric relief.
Permeability in the simulations is computed by applying K(x,z) = K0(f/f0)

3 m2 to the porosity field f(x,z),
where f0 = 0.01 is a reference porosity. Light blue, dark blue, and red lines correspond to log10K0 =
–(13, 12.5, 12), respectively. (B) Power spectral density estimates for each time series,made by using the
multitaper method with seven tapers. Axes are logarithmic.
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ridge axis, we obtain a magmatic flux in units of
kilograms per year per meter along the ridge of

MSLðtÞ ¼ ∫
0

zm
xlðzÞ rwrm

PS
:½t − tðzÞ�dz ð1Þ

where rw/rm is the density ratio of sea water to
mantle rock, P is the adiabatic productivity of
upwelling mantle (in kilograms of melt per cubic
meter of mantle per meter of upwelling), xl (z) is
the half-width of the partially molten region
beneath the mid-ocean ridge at a depth z, zm is
the maximum depth of silicate melting beneath
the ridge, and S

:½t − tðzÞ� is the rate of sea-level
change t years before time t (13).
This formulation reveals why our numerical

model results (Fig. 1) contradict earlier work
(6, 7). Whereas earlier work noted that variations
in crustal thickness are inversely proportional
to spreading rate, CSL =MSL/(U0rc), our model
shows that mass flux is proportional to the
width of the partially molten region beneath the
ridge. This width can be expressed as xl (z) =
U0R(z)/(4k), where U0 is the half-spreading
rate, k is the thermal diffusivity, and R(z) ac-
counts for depth-dependent influences on melt-
ing that are independent of spreading rate (fig.
S1). The competing influences associated with
the volume ofmantle fromwhichmelt is extracted
and the rate at which new crust is formed means
that sensitivity to sea-level variation does not
simply decrease with increasing spreading rate.
Instead, the magnitude of the crustal response

depends on the time scale of sea-level forcing
relative to the time required to deliver melt from
depth to the surface. Melt delivery times t are
computed in the reduced model by using a one-
dimensionalmelt column formulation anddecrease
with higher pemeability and faster spreading
rate (13, 15). The same response occurs in the
numerical model; in both cases, t decreases with
increasing spreading rate because the background
melting rate, dynamic melt fraction, and perme-
ability of the melting region all increase.
To quantify crustal response as a function of

time scale, we use the amplitude ratio of crustal
to sea-level variation, called admittance, com-
puted at discrete frequencies by applying sinus-
oidal forcing. Admittance curves for both the
numerical (Fig. 2A) and reduced (Fig. 2B)models
show a distinct maximum that shifts toward
higher frequencies and larger magnitudes with
shorter t. When the period of sea-level forcing is
short relative to the characteristic transport time
tm = t(zm), additional melt produced at depth
(falling sea-level phase) does not have time to
reach the surface before a negative perturbation
tomelt production occurs (rising sea-level phase);
positive and negative perturbations cancel, and
crustal variation is small. When forcing periods
are long relative to tm, melt perturbations reach
the surface but are again small because melt
production scales with the rate-of-change of sea
level. Forcing periods near tm give maximum
admittance because of a combination of large
perturbation of melting rates and sufficient time
to reach the surface (Fig. 2C). These results
suggest that ridges are tuned according to melt-

transport rates to respond most strongly to cer-
tain frequencies of sea-level variability.
The correspondence of the results from the

numerical and reduced models provides a sound
basis for investigating the potential effects of sea-
level change on sea-floor bathymetry. Variations
in melt production lead to variations in crustal
thickness, and through isostatic compensation,
such thickness variations should produce changes
in bathymetry identifiable in high-resolution sur-
veys. The prominent spectral peaks of late Pleis-
tocene sea-level variation at the approximately
1/100 ky−1 ice age, 1/41 ky−1 obliquity, and 1/23 ky−1

precession frequencies (16) therefore translate
into a prediction for a bathymetric response that
depends on permeability and spreading rate.
Ourmodel results suggest that the best chance

to detect a sea-level response between 1/100 ky−1

to 1/20 ky−1 frequencies is at intermediate spread-
ing ridges. Slow spreading ridges show little pre-
cession response, an obliquity response that is
sensitive to uncertainties in permeability, and the
effects of intense normal faulting. Such faulting
causes rift valleys with larger relief than expected
from sea level–induced melting variations. The
sea-level signal should be less polluted by tectonic
effects at fast spreading ridges but may have
peak admittances at frequencies higher than

1/20 ky−1 that would obscure the responses at
predicted frequencies. For example, the numer-
ical simulation with the fastest spreading and
highest pemeability has peak spectral energy at
frequencies above precession (Fig. 1B).
At intermediate half-spreading rates of 3 cm/

year, 40-ky periods lead to predicted bathymetric
variations with a wavelength of 1200 m on each
side of the ridge. Such fine-scale variations can
be obscured in global topographic databases that
grid data from multiple cruises and may have
offsets in navigation or depth. To investigate the
model predictions, a modern data set with uni-
form navigation and data reduction from a single
survey is preferred. Such data are available for two
areas of the Australian-Antarctica ridge that were
surveyed by the icebreaker Araon of the Korean
Polar Research Institute in 2011 and 2013 (Fig. 3).
Analysis was undertaken by identifying a re-

gion whose abyssal hill variability is relatively
undisturbed by localized anomalies, averaging
off-axis variability into a single bathymetric line
and converting off-axis distance into an estimate
of elapsed time by using a plate motion solution
(17). Spectral analysis of the associated bathym-
etry time series is performed by using the mul-
titaper procedure (18) and shows spectral peaks
that are significant at an ~95% confidence level
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Fig. 2. Crustal thickness admittance, computed for a sinusoidal variation in sea level with period
TSL. (A and B) Admittance curves derived from (A) numerical simulations and (B) the reduced model
(13). (C) A plot of depth z versus the integrand from the reduced model of magma production owing to

sea-level variation,MSLðtÞº∫zm
0

xlðzÞS
:
½t − tðzÞ�dz (Eq. 1 and text following). The model is evaluated for

U0 = 4 cm/year, K0 = 10−13 m2, and three values of sea-level oscillation period TSL.
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near the predicted ice age, obliquity, and preces-
sion frequencies (Fig. 3). Although absolute ages
are uncertain because we lack sea-floormagnetic
reversal data, spectral analysis only requires con-
straining the relative passage of time. The 2s
uncertainties associated with relative Australian-
Antarctic platemotion are T4% (17), implying, for
example, that the 1/41 ky−1 obliquity signal re-
sides in a band from 1/39 ky−1 to 1/43 ky−1, a width
that is smaller than our spectral resolution.
Another check onmodel-data consistency is to

comparemagnitudes of variability. Surface bathym-
etry will be roughly 6/23rds of the total varia-
tion in crustal thickness because of the relative

densitydifferencesof crust-water andcrust-mantle,
assuming conditions of crustal isostasy. The closest
match between simulation results and obser-
vations, in terms of the distribution of spectral
energy, is achieved by specifying a permeability
at 1% porosity of K0 = 10−13 m2 (Fig. 3). The
standard deviation of the simulated bathymetry
is 36 m, after multiplying crustal thickness by
6/23 and filtering (13). To minimize the contri-
bution from non-sea-level–induced variations in
the observed bathymetry, it is useful to filter fre-
quencies outside of those between 1/150 ky−1 and
1/10 ky−1. The standard deviation of the filtered
observations is 44 m, where the slightly larger

value is consistent with changes in sea level
being an important but not exclusive driver of
changes in crustal thickness.
Analysis of bathymetry in another area of the

Australian-Antarctic ridge 400 km to the south-
east (fig. S2) shows a significant spectral peak at
the obliquity frequency and indication of a peak
near 1/100 ky−1, but no peak near the precession
frequencies. Predicted and observed bathymetry
is also similar, with standard deviations of 33 and
34m, respectively, after accounting for fractional
surface expression and filtering. Absence of a
precession peak may result from spectral esti-
mates being more sensitive to elapsed time er-
rors at higher frequencies (19), where such errors
may be introduced through extensional faulting
or asymmetric spreading. Detection could also
be obscured by the previously noted influence of
faulting (3, 20) as well as off-axis volcanism or
sediment infilling of abyssal troughs. Detection of
significant spectral peaks at predicted frequencies
at two locations of the Australian-Antarctic ridge
nonetheless constitutes strong evidence formodu-
lation of crustal production by variations in sea
level.
Our numerical and analytical results show a

complex relationship between spreading rate
and amplitudes of crustal thickness variations
associated with changes in sea level. Perturba-
tions to the background melt production and
delivery depend on the frequency content of the
sea-level signal, as a result of the dynamics of
magma transport. Reference mantle permeabil-
ity and ridge-spreading rate are key controls on
this frequency dependence. This result could be
useful: The spreading rate can be accurately
determined for a ridge, but parameters associ-
ated with magma dynamics are far less certain,
such as the amplitude and scaling of permeabil-
ity. Uncertainty associatedwith spectral estimates
of bathymetry and sea-level estimates need to be
better characterized, but together, these may pro-
vide a constraint on the admittance and hence
dynamical parameters of a ridge.
Althoughresults fromthehigh-resolutionbathym-

etry are promising, much remains to be done
to further test the hypothesis advanced here.
Crustal thickness is not an instantaneous re-
sponse to melt delivery from the mantle but also
reflects crustal processes that may introduce tem-
poral and spatial averaging.Where long-livedmag-
ma chambers are present, for example, there may
also be a crustal time-averaging that depends
on spreading rate. In addition, faulting at all
spreading rates is an observed and important
phenomenon, and sea-floor bathymetry reflects
the combined effects ofmagma output and crust-
al faulting (3, 20). Deconvolving the relative roles
of such processeswill be important. High-resolution
surveys in targeted regions will provide the
opportunity for a more complete and rigorous
analysis than is presently possible.
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Fig. 3. Bathymetry at a section of the Australian-Antarctic Ridge. A region of consistent bathymetry
is indicated between the black lines (top right) and is shown in profile (bottom left, blue) after converting
off-axis distance to an estimate of time. Time is zero at the approximate ridge center. Also shown is
bathymetry after filtering frequencies outside of 1/150 ky and 1/10 ky (green), and simulated bathymetry
(black, for U0 = 3.3 cm/year and K0 = 10−13 m2). Spectral estimates (bottom right) are shown for the
unfiltered bathymetry (blue) and model results (black), where the latter are offset upward by an order of
magnitude for visual clarity. Data availability is uneven across the ridge, and spectral estimates are for the
longer, southern flank. Unlike in Fig. 1B, spectral estimates are prewhitened in order to improve the de-
tectability of spectral peaks (supplementary materials). Vertical dashed lines indicate frequencies asso-
ciated with 100-ky late-Pleistocene ice ages, obliquity, and precession. Axes are logarithmic. Statistical
significance is indicated by the black bar at the top right; spectral peaks rising further than the distance
between the mean background continuum (corresponding to the black dot) and 95th percentile (top of
black bar) are significant.
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Reduced vaccination and the risk
of measles and other childhood
infections post-Ebola
Saki Takahashi,1 C. Jessica E. Metcalf,1,2 Matthew J. Ferrari,3 William J. Moss,4

Shaun A. Truelove,4 Andrew J. Tatem,5,6,7 Bryan T. Grenfell,1,6 Justin Lessler4*

The Ebola epidemic in West Africa has caused substantial morbidity and mortality. The
outbreak has also disrupted health care services, including childhood vaccinations,
creating a second public health crisis.We project that after 6 to 18 months of disruptions, a
large connected cluster of children unvaccinated for measles will accumulate across
Guinea, Liberia, and Sierra Leone. This pool of susceptibility increases the expected size of
a regional measles outbreak from 127,000 to 227,000 cases after 18 months, resulting in
2000 to 16,000 additional deaths (comparable to the numbers of Ebola deaths reported
thus far). There is a clear path to avoiding outbreaks of childhood vaccine-preventable
diseases once the threat of Ebola begins to recede: an aggressive regional vaccination
campaign aimed at age groups left unprotected because of health care disruptions.

T
he current Ebola crisis in West Africa is
one of the worst public health disasters in
recent memory, having caused more than
21,000 cases and 8400 deaths as of January
2015 and raising the specter of a broader

international crisis (1). However, there are signs
of hope. Evidence shows that the number of cases
is declining in Liberia (2), and sustained trans-
mission has been confined to Guinea, Liberia, and
Sierra Leone, despite several transnational in-
troductions including recent transmission in
Mali. Stopping Ebola would be a triumph for the
global health community and the public health
agencies of the affected countries. But even after
the last Ebola case recovers, the disruptions of

local health systems caused by the outbreak could
lead to a second infectious disease crisis that
could kill as many as, if not more than, the orig-
inal outbreak.
Through the combination of the World Health

Organization (WHO) Expanded Programme on
Immunization (EPI) and periodic supplemental
immunization campaigns, annual childhood deaths
from vaccine-preventable diseases have dropped
from an estimated 900,000 in 2000 to 400,000
in 2010 (3). Measles is emblematic of this success;
globally, estimated annual measles mortality
has decreased from 499,000 to 102,000 since
2000 (4, 5). The Ebola-affected countries have
been an important part of this achievement:
The three countries reported nearly 93,685
cases of measles in the decade between 1994
and 2003 (despite Sierra Leone not reporting
in 4 years), and only 6937 between 2004 and
2013 (in both periods it is likely that only a
fraction of measles cases were reported to the
WHO) (6). Despite this success, measles suscep-
tibility has been growing in all three countries
in recent years, and each had planned a mea-
sles vaccination campaign prior to the Ebola
outbreak.

Measles epidemics often follow humanitarian
crises. Measles is one of the most transmissible
infections, and immunization rates tend to be
lower than for other EPI vaccines, in part be-
cause of the older age at which measles vaccine
must be administered [9 months, versus 6 weeks
or younger for the first dose of other vaccines
(7)]. For this reason, explosive measles outbreaks
are often an early result of health system failure.
Outbreaks have followed disruptions due to war
[e.g., the current conflict in Syria (8)], natural
disasters [e.g., the eruptions of Mt. Pinatubo in
1991 (9)], and political crises [e.g., Haiti in the
early 1990s (10)]. The effects are most acute when
measles epidemics are associated with famine
or long-term national instability: A survey of 595
households displaced as a result of the Ethiopian
famine in 2000 found measles to be a contrib-
uting cause in 35 of 159 deaths (11), and after
years of instability in the Democratic Republic
of Congo, the country experienced a measles out-
break of 294,455 cases and 5045 deaths between
2010 and 2013 (12).
To understand how Ebola-related health care

disruptions are increasing the risk from mea-
sles, we estimated the spatial distribution of un-
vaccinated children and the measles susceptibility
profile for each country before and after these
disruptions. Geolocated cross-sectional data from
Demographic and Health Surveys (DHS) in Guinea,
Liberia, Sierra Leone, and surrounding countries
were used to estimate vaccine coverage in each
5 km × 5 km grid cell by means of a hierarchical
Bayesian model and spatial smoothing techniques.
These rates were applied to spatially explicit
data on population and birth cohort size to map
the number of children between 9 months and
5 years of age who were unvaccinated against
measles before Ebola-related health care disrup-
tions (Fig. 1A) (13, 14). Forward projections of
the number of unvaccinated children after 6, 12,
and 18 months were generated by reducing the
rate of routine vaccination by 75% for the spec-
ified duration (reductions of 25, 50, and 100%
were also considered as a sensitivity analysis). Full
population susceptibility on a national level at
baseline and after 18 months of disruptions were
then estimated by combining these estimates with
the results of models that estimate the immune
profile in each age cohort on the basis of their
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