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ABSTRACT

The spread in climate sensitivity obtained from 12 general circulation model runs used in the Fourth

Assessment of the Intergovernmental Panel on Climate Change indicates a 95% confidence interval of

2.18–5.58C, but this reflects compensation between model feedbacks. In particular, cloud feedback strength

negatively covaries with the albedo feedback as well as with the combined water vapor plus lapse rate

feedback. If the compensation between feedbacks is removed, the 95% confidence interval for climate sen-

sitivity expands to 1.98–8.08C. Neither of the quoted 95% intervals adequately reflects the understanding of

climate sensitivity, but their differences illustrate that model interdependencies must be understood before

model spread can be correctly interpreted.

The degree of negative covariance between feedbacks is unlikely to result from chance alone. It may,

however, result from the method by which the feedbacks were estimated, physical relationships represented

in the models, or from conditioning the models upon some combination of observations and expectations.

This compensation between model feedbacks—when taken together with indications that variations in ra-

diative forcing and the rate of ocean heat uptake play a similar compensatory role in models—suggests that

conditioning of the models acts to curtail the intermodel spread in climate sensitivity. Observations used to

condition the models ought to be explicitly stated, or there is the risk of doubly calling on data for purposes of

both calibration and evaluation. Conditioning the models upon individual expectation (e.g., anchoring to the

Charney range of 38 6 1.58C), to the extent that it exists, greatly complicates statistical interpretation of the

intermodel spread.

1. Introduction

Collections of global climate model runs are the back-

bone of efforts to predict future climate, as most recently

represented by the Coupled Model Intercomparison

Project 3 (CMIP3) (Meehl et al. 2007) that collected to-

gether model runs used in the Intergovernmental Panel

on Climate Change Fourth Assessment Report (IPCC

AR4). Although these model runs were not designed to

span the full range of uncertainty, are not fully inde-

pendent, and are not identically forced (e.g., Knutti et al.

2010), they do offer some indication of the range of future

climate states. If we are to correctly interpret such an

ensemble of opportunity, it is first necessary to determine

the interdependence between the models and what range

of uncertainty is covered by the ensemble.

An important interdependence was identified between

the radiative forcing and climate sensitivity across the

CMIP3 models by Schwartz et al. (2007), who noted

that, while twentieth-century changes in radiative forc-

ing differs by a factor of 4 (0.6 to 2.4 W m22, 5%–95%

confidence limits) across the models, the resulting tem-

perature spread differs by only a factor of 2. Although

a linear relationship between radiative forcing and tem-

perature is not expected—for example, because of long

adjustment time scales—this ratio of differences nonethe-

less suggests compensation between various model com-

ponents. Kiehl (2007) then presented evidence that this

narrow temperature range results from an anticorrela-

tion between radiative forcing and climate sensitivity, and

Knutti (2008) demonstrated that this anticorrelation holds

for the CMIP3 models in particular. Differences in radia-

tive forcing arise from how aerosols are treated. Thus, the

CMIP3 models approximate the twentieth-century warm-

ing through differing balances between radiative forcing

and climate sensitivity.

Intermodel compensation between climate sensitiv-

ity and radiative forcing (Schwartz et al. 2007; Kiehl

2007; Knutti 2008) underscores that the models are not

based purely on theory but are also conditional upon
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observations and, possibly, expectations. It has been

noted that the influence of aerosol tuning on twentieth-

century simulations has little influence on the spread of

future climate predictions because the radiative forcing

from atmospheric CO2 comes to dominate over aerosols

in the emissions scenarios (Kiehl 2007; Knutti 2008).

However, the question arises whether other features of

the models are also tuned and how these influence the

spread in climate predictions.

Webb et al. (2006) observed that the radiative forcing

associated with a doubling of CO2 and climate sensi-

tivity is anticorrelated across the models in the Cloud

Feedback Model Intercomparison Project (McAvaney

and Le Treut 2003). This suggests that the tuning of

radiative forcing extends beyond aerosols and has con-

sequences for the spread across predictions. Further-

more, Raper et al. (2002) noted that differences in the

efficiency of heat uptake across the models in the second

Coupled Model Intercomparison Project (CMIP2) give a

more similar transient climate sensitivity across models

than is expected from purely physical considerations.

Following these indications that variations in the radia-

tive forcing and ocean heat uptake across models act to

narrow the spread in climate sensitivity, variations in the

strength of feedbacks across the CMIP3 models are ex-

plored to see whether these also act to curtail the spread

in climate sensitivity.

2. Feedbacks and their covariance

Feedbacks are variously defined in the literature, mak-

ing it useful to recap the notation used here, which fol-

lows the standard electronics literature definition. The

relationship between changes in radiative forcing and

temperature can be represented as a linear feedback

system, DT 5 loDR 1 fDT, where perturbations in ra-

diative forcing (DR in units of W m22) lead to direct

changes in temperature (DT in units of 8C) according to

the basic climate sensitivity (lo in 8C per W m22), as

well as through feedbacks ( fx, which are unitless). The

feedback factors are linearly additive and those associ-

ated with water vapor, the vertical lapse rate, albedo, and

clouds are considered: fnet 5 fwv 1 flr 1 fa 1 fc. The mean

and variance of fnet then depends on the joint probability

distribution relating each feedback to one another, a topic

returned to later. Solving for DT yields the expression

DT 5
l

o
DR

1 � f
net

. (1)

This representation is based on the assumption that the

earth’s temperature changes can be modeled as a linear

perturbation and obviously breaks down for fnet $ 1.

I rely upon the feedbacks estimated for the CMIP3

models by Soden and Held (2006; see also Fig. 1 and

Table 1 and appendix herein), where they considered

results using the A1B emission scenario. Note that Soden

and Held did not compute a climate sensitivity for the

Goddard Institute for Space Studies Atmosphere–Ocean

Model (GISS AOM) and GISS Model E-H (GISS EH)

because these were only run out to 2100 AD and these

models are excluded from the present analysis. Soden and

Held (2006) define feedback parameters as gx 5 DRx/DTx

and include the basic model response to changes in radi-

ative forcing as a feedback. To convert to the formulation

introduced above, basic climate sensitivity is obtained as

lo 5 1/gp, where gp is Soden and Held’s Planck feedback.

The feedback parameters for each model are then ob-

tained as fx 5 logx [see Fig. 1 and Table 1 herein as well as

Bony et al. (2006) and Roe and Baker (2007) for a more

detailed discussion].

Anticorrelation between the water vapor feedback and

the lapse rate feedback is expected on physical grounds

(e.g., Cess 1975; Held and Soden 2000). For example,

a less steep lapse rate (a negative feedback) implies

relatively greater warming aloft and, by the Clausius–

Clapeyron relationship, more upper tropospheric water

vapor (a positive feedback). Thus, as is common, these

two feedbacks are added together to form a single water

vapor plus lapse rate feedback, fwv1lr. Note, however,

that it can be questioned whether the anticorrelation

between these feedbacks is an artifact of the models

(Bony et al. 2006), possibly because coarse vertical reso-

lution leads to a poor representation of changes in water

vapor (Tompkins and Emanuel 2000). Whether other

feedbacks ought to covary in one or another direction is

less clear and will be taken up in greater detail below.

The variance in the net feedbacks across the 12

CMIP3 models, var(fnet), is 0.0082, whereas the vari-

ances in the individual feedbacks are var(fa) 5 0.0004,

var(fwv1lr) 5 0.0014, and var(fc) 5 0.014. The variance

in cloud feedbacks, fc, is almost double the net variance,

fnet, indicating that the other feedbacks compensate for

variability in fc. Indeed, the cross-correlation between

fc and fwv1lr is 20.7 and the cross-correlation between

fc and fa is 20.4 (see Fig. 1). The anticovariance be-

tween fc and fa and between fc and fwv1lr is actually

larger than the variance associated with fa and fwv1lr,

respectively (see Table 2). If the covariance between

individual feedbacks is suppressed and the individual

feedback variances simply added together, the variance

of fnet becomes 0.016, double the value obtained when

covariance is included.

Clouds appear to be the principal source of uncer-

tainty in the models (e.g., Soden and Held 2006), as

follows from the variance in fc being more than an order
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of magnitude larger than the variance in fa or fwv1lr, but

variance alone is an insufficient description of differ-

ences in feedbacks across models. The covariance be-

tween clouds and the other feedbacks sums to 20.0082.

Thus, the cloud covariance compensates for more than

half of the cloud variance and, by coincidence, is very

nearly equal in magnitude, albeit opposite in sign, to the

net variance, var(fnet) 5 0.0082. Thus, both the variance

in fc and the covariance between fc and other feedbacks

appear to be leading order terms in determining fnet.

Colman (2003a) also collected estimates of climate

feedbacks from various models but, because the feed-

backs were estimated using different methods, their in-

termodel variance is more difficult to interpret than the

results of Soden and Held (2006). It is nonetheless notable

that Colman’s results indicate that the intermodel variance

of fnet is nearly three times larger when the covariance

between fc, fa, and fwv1lr is suppressed, indicating that

substantial compensation also occurs between the esti-

mated feedbacks in those models.

3. Climate sensitivity

The CMIP3 ensemble of models is not designed to cap-

ture the full range of uncertainty in climate predictions,

but it is still instructive to examine the implications that

this ensemble has for the distribution of climate sensi-

tivity. Climate sensitivity is defined as DT/DR23, with

DR23 representing the radiative forcing expected from

a doubling of atmospheric CO2. An indication of the

FIG. 1. Feedback values from the CMIP3 collection of models (Soden and Held 2006). (a) The individual and net

feedback factors for 12 climate models, ordered according to the strength of the net feedback. The cloud feedback

plotted against (b) the albedo feedback and (c) the combined lapse rate and water vapor feedback.

TABLE 1. Columns are the basic response of the system to

a change in radiative forcing, lo; the albedo, cloud, and combined

lapse rate plus water vapor feedback; and the sum of the feedbacks.

Rows correspond to individual models. All values are adapted

from Soden and Held (2006, Table 1). Model names are listed in the

appendix.

Model lo Albedo Clouds wv 1 lr

Net

feedback

NCAR CCSM3 0.31 0.11 0.04 0.33 0.49

GISS ER 0.31 0.05 0.20 0.25 0.49

NCAR PCM1 0.31 0.11 0.06 0.34 0.51

MRI 0.31 0.08 0.07 0.37 0.53

INMCM3 0.31 0.10 0.11 0.33 0.54

GFDL CM2-1 0.31 0.06 0.25 0.26 0.58

GFDL CM2-0 0.31 0.10 0.21 0.32 0.63

CNRM 0.31 0.10 0.25 0.29 0.64

UKMO HADCM3 0.31 0.07 0.34 0.29 0.70

IPSL 0.32 0.07 0.33 0.31 0.70

MIROC MEDRES 0.32 0.10 0.34 0.28 0.72

MPI ECHAM5 0.31 0.09 0.37 0.27 0.73

1 JUNE 2010 H U Y B E R S 3011



distribution of climate sensitivity can be obtained from

the sample distribution of fnet.

For illustrative purposes, fnet is assumed to follow

a normal distribution characterized by the sample mean

and variance obtained from the 12 CMIP3 models. (A

Lilliefors test for the normality of the 12 net feed-

back values yields a p value of 0.34; thus, normality

cannot be rejected, but this is a weak result given the

small amount of data.) The assumption of normality is

not ideal because it implicitly assumes that infinite cli-

mate sensitivity has nonzero probability, and it does not

correctly represent the probability of negative climate

sensitivity. Weitzman (2009a) discusses the implications

of very large climate sensitivity under more reasonable

assumptions regarding the probability distribution, and

Frame et al. (2005) and Annan and Hargreaves (2009)

discuss how the choice of priors and distributional forms

can influence the resulting estimates of climate sensitivity.

Assuming normality, the distribution of fnet can be

converted into a distribution for climate sensitivity fol-

lowing Roe and Baker (2007); see Fig. 2. The observed

mean and variance of the net feedback [mean( fnet) 5

0.6, var( fnet) 5 0.008] gives a distribution of the climate

sensitivity with a 95% confidence range between 2.08

and 5.58C, whereas the net variance obtained without

feedback covariance [mean( fnet) 5 0.6, var( fnet) 5 0.016]

gives a range from 1.98 to 8.08C. The wider distribu-

tion of climate sensitivity is more consistent with the

climateprediction.net results (Stainforth et al. 2005) and

parallels how Roe and Baker (2007) estimated uncer-

tainty across the CMIP3 models. Note that the length and

fatness of the tail of the climate sensitivity distribution

is particularly sensitive to changes in feedback uncer-

tainty because of how feedback variance asymmetrically

maps into climate sensitivity (Hansen et al. 1985; Roe

and Baker 2007), with the upper 95% bound increasing

by 2.58C. Often climate sensitivity is reported with a

90% confidence interval, but 95% is also a standard

statistical choice; although this emphasizes the range

where the distribution is more poorly understood (e.g.,

Annan and Hargreaves 2009), it is nonetheless perhaps of

greater societal relevance (Weitzman 2009b).

The two distributions of climate sensitivity considered

here are illustrative of the importance of the covariance

terms but neither is an acceptable estimate. In addition

to the uncertainty in the functional form of the distri-

butions, these estimates also come with the limitations

of the CMIP3 ensemble, some of which were noted ear-

lier. Additionally, the CMIP3 models are not indepen-

dent of one another—both specifically (Tebaldi and Knutti

2007) and generally in that the assumptions, numerical

approaches, and training of the modelers widely overlap—

thus biasing the feedback variance low relative to that

expected from independent realization. Knutti et al.

(2010, and references therein) show the CMIP3 repre-

sentation of 1980–99 surface air temperature contain

systematic biases such that averaging across the various

models reduces the rms error by less than half, whereas

an approximately fourfold reduction is expected for in-

dependent errors. Further, the ensemble spread is cur-

tailed by omission of ice shelf, carbon cycle, and other

processes and, arguably, is widened by ignoring obser-

vational and other constraints upon climate sensitivity

(e.g., Edwards et al. 2007; Knutti and Hegerl 2008; Urban

and Keller 2009; Annan and Hargreaves 2009).

Nonetheless, the enormous attention given to the

model indications of climate sensitivity and the spread

between these predictions, coupled with a sensitivity to

the degree of covariance between feedbacks, suggests

that inquiring into the origins of feedback covariance is

worthwhile. Below I analyze the covariance between

cloud and other feedbacks using some simple statistical

tests. A more complete analysis would involve diagnosing

the origins of feedback covariance within and across the

CMIP3 models.

4. Origins of the covariance

There appear to be four possible explanations for

how the overall negative covariance between feedbacks

could arise: by chance, because of how the feedbacks are

estimated, model parameterization of the physics inher-

ently resulting in negative covariance, or through con-

ditioning the models upon observations or expectations.

These possibilities are not exclusive of one another.

a. Covariance by chance

What are the odds that the covariance observed be-

tween the feedbacks is truly zero and merely arises from

chance fluctuations? An analytical approach to assess-

ing these odds would involve modeling the covariance

TABLE 2. The covariance between feedbacks, the sums of vari-

ance (right column and bottom row), and the net variance (bottom

right). All variances and covariances are multiplied by 10 000 and

rounded. Also shown in parentheses are the cross-correlations

between pairs of feedbacks. Note that the albedo and the combined

water vapor plus lapse rate feedback each have a covariance with

the cloud feedback that exceeds their individual variance. Models

with higher albedo or combined lapse rate plus water vapor feed-

backs thus actually tend to have a lower climate sensitivity.

Albedo Clouds wv 1 lr Net

Albedo 4 (1) 210 (20.4) 4 (0.6) 21

Clouds 210 (20.4) 139 (1) 231 (20.7) 97

wv 1 lr 4 (0.6) 231 (20.7) 14 (1) 213

Net 21 97 213 82
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matrix and requires assumptions regarding the under-

lying feedback distributions. Instead, it seems preferable

to use a bootstrap method that takes advantage of the

sample distribution.

Bootstrapping is performed by shuffling the feedbacks

across the different models. For example, the NCAR

CCSM3 albedo is randomly reassigning to any one of the

albedos in the 12 models, including the NCAR CCSM3

model itself. This shuffling preserves the distribution of

the feedbacks across models while destroying the expected

covariance between different sets of feedbacks (e.g.,

Chernick 2007), in accord with a null hypothesis of zero

covariance. The covariance matrix associated with the

feedbacks is then recomputed from the shuffled feed-

back matrix, and summing across the rows and columns

gives a realization of the net feedback variance. Note

that the diagonal of the covariance matrix is unaffected

because only covariance, not variance, depends on the

ordering the feedbacks.

Repeating the bootstrap procedure 100 000 times in-

dicates a 0.3% probability for variance to be equal to or

lower than the observed value of 0.008 by chance alone.

It is thus safe to reject the null hypothesis and conclude

that the small variance between model feedbacks arises

from an actual negative covariance between the feedbacks.

Now the question becomes why such negative covariance

exists.

b. Feedback estimation artifacts

The least interesting explanation of the negative co-

variance between clouds and the other feedbacks is as an

artifact of the manner in which cloud feedbacks are es-

timated. The estimates used here (Soden and Held 2006)

were acquired using the partial radiative perturbation

approach (Wetherald and Manabe 1988; Held and Soden

2000). For each of 12 models, Soden and Held (2006)

computed the change in a climate variable relative to the

change in mean surface temperature between two decade-

long control periods. The resulting ratios were then mul-

tiplied by the partial derivatives of top of the atmosphere

radiation with respect to each climate variable to yield

sensitivity fields. The climate variables considered were

vertically average temperature, lapse rate, and albedo—

each as a function of latitude, longitude, and (excepting

average temperature) altitude. The fields of radiative

sensitivity to temperature changes were then integrated

from the surface to tropopause and averaged globally.

Note that sensitivities to radiation were only estimated

for the Geophysical Fluid Dynamics Laboratory (GFDL)

but were applied to all models, which introduces some

FIG. 2. Climate sensitivity distribution. (a) The probability distribution for climate sensitivity

associated with a mean feedback of 0.6 and a variance of 0.008 (solid lines) or 0.016 (dashed lines).

The higher variance results from assuming that the cloud, albedo, and combined water vapor and

lapse rate feedbacks are independent. Vertical lines indicate the 95% intervals for each distri-

bution. The positive skew of the probability distribution leads to a large 2.58C shift in the upper

95% bound but little change at the lower bound. (b) As in (a) but for the cumulative probability.
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error (Soden et al. 2008). Furthermore, the partial ra-

diative perturbation approach is less prone to introduc-

ing correlation between clouds and other feedbacks than

the other commonly used method—the so-called cloud

forcing approach—but is by no means guaranteed to be

free of artifacts (Aires and Rossow 2003; Soden et al.

2004; Bony et al. 2006; Soden et al. 2008).

One issue is that cloud feedback could not be directly

estimated because of changes in vertical overlap (Soden

and Held 2006). Cloud feedbacks were instead found as

the residual between the estimated net feedback and the

individual feedback estimates, fc 5 fnet 2 fa 2 fwv1lr.

Uncertainties in the estimation of these parameters

could, in the limit, lead to fnet being unrelated to both fa

and fwv1lr, yielding fc 5 2( fa 1 fwv1lr) 1 �, where � is

uncorrelated with both fa and fwv1lr. The expected co-

variances are then (i) cov( fc, fa) 5 2var( fa) 2 cov( fa,

fwv1lr) 5 20.0004 2 0.0004 5 20.0008 and (ii) cov( fc,

fwv1lr) 5 2var( fwv1lr) 2 cov( fa, fwv1lr) 5 20.0014 2

0.0004 5 20.0018, where the values for the variance and

covariance are taken from the sample values (see Table 2).

The case of negative sample covariance imposed by the

estimation procedure considered here seems an upper

bound, much larger than the expected errors (Soden and

Held 2006; Soden et al. 2008), yet the resulting covari-

ances are still less negative than the sampled values,

cov( fc, fa) 5 20.0010 and cov( fc, fwv1lr) 5 20.0031. A

scenario in which random draws of feedbacks happen to

accentuate negative covariance present from estimation

artifacts cannot be ruled out, but such a compound ex-

planation seems unsatisfying. Other artifacts could also

be present, the nature of which is unclear.

It also notable that the manner in which the cloud

feedbacks are calculated absorbs all processes that in-

fluence each model’s sensitivity except the feedbacks

that are directly estimated (Soden and Held 2006). It is

thus not possible to fully determine which model ele-

ments contribute to the variance and covariance asso-

ciated with fc. Direct estimation of cloud feedbacks

would permit more conclusive results.

c. Inherent covariance between feedbacks in the
models

The nonlinearities inherent to the climate system sug-

gest that it is unlikely for any feedback to be truly in-

dependent. Yet the general expectation of interaction is

distinct from determination of the magnitude or even the

expected sign of the relationship between feedbacks. The

more poignant question is whether there is a physical basis

by which to expect cloud feedbacks to be anticorrelated

with the strength of albedo and water vapor feedbacks.

Colman et al. (1997) analyzed the feedbacks present

in a single model and found evidence for significant

nonlinearity in the longwave response of lapse rates,

clouds, and water vapor to perturbations in sea surface

temperature ranging between 228 and 28C. Although

interactions between feedbacks were not explicitly di-

agnosed, nonlinear changes in the strength of an in-

dividual feedback indicate sensitivity to the background

climate and, thus, the likelihood of covariance between

feedbacks. A more recent study by Colman (2003b) in-

dicated that the strength of feedbacks also varies over

the course of the seasons, further supporting the notion

of nonlinear model feedbacks. Likewise, Aires and

Rossow (2003) highlight nonlinear interactions between

feedbacks in the context of a simple model using a neu-

ral network approach.

Sanderson et al. (2008b) explored the leading inter-

actions between feedbacks in a version of the Hadley

Centre Slab Climate Model version 3 (HADSM3) through

an empirical orthogonal function analysis of model radia-

tive responses obtained through perturbation of model

parameters. They show that the majority of the differ-

ence in climate sensitivity can be traced to variations in

the entrainment coefficient in their model’s convective

scheme. Reducing the entrainment coefficient increases

the water vapor feedback strength because convection

then delivers vapor farther aloft and decreases the cloud

feedback strength because there are then fewer low-level

clouds at midlatitudes in the basic model state. The sense

of anticorrelation between cloud and water vapor feed-

backs is consistent with the results observed across the

CMIP3 models, although this result is obtained using only

a single model. This example illustrates how uncertainty

in parameters can introduce feedback covariance across

multiple versions of a model and, presumably, across dif-

ferent models.

There are also more physical reasons why feedbacks

might covary. For example, more vigorous deep con-

vection associated with a warming climate would in-

crease upper tropospheric relative humidity and may

also increase anvil cloud cover, albedo, and negative

shortwave forcing, potentially leading to negative co-

variance between water vapor and cloud feedbacks

(A. D. Del Genio 2009, personal communication). As

another example, Gorodetskaya et al. (2008) document

that the loss of Arctic sea ice and surface albedo is com-

pensated by an increase in low-level clouds. Although Kay

and Gettelman (2009) find little evidence for such cloud

compensation in satellite observations, such a mechanism

could nonetheless operate across the CMIP3 models. It

should also be noted that the magnitude and sign of

covariance between feedbacks will depend upon the

climate state. For example, Abbot et al. (2009) illustrate

how prescribing a much warmer climate without sea ice

initiates convective cloud formation in the Arctic that
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causes a strong positive feedback upon warming, suggest-

ing that ultimately the positive sea ice–albedo feedback

could also be associated with a positive sea ice–cloud

feedback. Presumably many more such interactions be-

tween feedbacks await articulation.

While the controls upon feedbacks have begun to be

parsed (e.g., Bony and Dufresne 2005; Webb et al. 2006),

there remains substantial uncertainty both in identifying

the causes of variations in individual feedbacks and in

identifying interdependence between feedbacks (e.g.,

Bony et al. 2006; Sanderson et al. 2008b). It seems likely

that the observed covariance depends at least in part on

physical interactions between feedbacks or on how that

physics is parameterized, though it is not yet possible to

attribute the covariance among feedbacks in the CMIP3

models to a particular set of physical processes or pa-

rameter settings.

d. Feedback conditioning

Covariance could also arise through conditioning the

models. A dice game illustrates how this might work.

Assume two 6-sided dice that are fair so that no correla-

tion is expected between the values obtained from suc-

cessive throws. But if throws are only accepted when the

dice sum to 7, for example, then a perfect anticorrelation

will exist between acceptable pairs (i.e., 1–6, 2–5, etc.).

Now introduce a 12-sided die and require the three dice to

sum to 14. An expected cross-correlation of 20.7 then

exists between realizations of the 12-sided die and each of

the 6-sided die, whereas the values of the two 6-sided dice

have no expected correlation between them. The sum-

mation rule forces the 6-sided dice to compensate for the

greater range of the 12-sided die. This illustrates how

placing constraints on the output of a system can introduce

covariance between the individual components. Note that

this covariance can be introduced, albeit not diagnosed,

without ever actually observing the individual values.

An analogous situation may hold for the CMIP3

models, with variations in flr and fwv compensating for

the larger variations in fc. For example, if DR23/DT

is made to have a specific value or range of values, it

follows from Eq. (1) that only certain combinations of

feedback values will be acceptable, fc 1 fa 1 flr1wv 5

1 2 loDR23/DT. Of course, the magnitude of DR23 or lo

could be adjusted, as also seems to have been the case

for the CMIP3 models (Schwartz et al. 2007; Kiehl 2007;

Knutti 2008)—but only feedbacks are focused on here.

Model conditioning can be differentiated as calibration

and tuning. Calibration is used to refer to the adjustment

of model parameters so as to bring model results into

better agreement with specific observations or theory,

whereas tuning will refer to adjustments made for other

reasons. The distinction is useful—even if never perfect

given that what constitutes agreement, observation, and

theory is partly subjective—because the statistical im-

plications of these two forms of conditioning are quite

different.

As an example of calibration, CMIP3 models tend to

underestimate longwave and overestimate shortwave

surface radiation by, on average, 6 W m22 (Wild 2008),

an anticorrelation that can be understood as arising

from the need to close the energy budget. Variations in

aerosol radiative forcing (Schwartz et al. 2007; Kiehl

2007) and ocean heat uptake (Raper et al. 2002) that

offset differences in climate sensitivity to give the ob-

served degree of modern warming are also indicative of

model calibration (Knutti 2008). As a final example, the

standard model settings of version 3 of the Hadley

Center Atmospheric Model (HadAM3) were found to

be very nearly optimal for reproducing a range of cli-

mate data relative to a large number of perturbed ver-

sions of the model (Sanderson et al. 2008a), suggesting

that this model was highly calibrated. It seems likely that

model feedbacks are also calibrated against modern

climate variations. The amount of covariance such cal-

ibration introduces among feedbacks could be explored,

for example, by computing the feedback covariance across

parameter perturbed realizations of general circulation

models and comparing these against the feedback co-

variance found in the subsample of perturbed models that

reproduce modern temperature trends.

Model conditioning need not be restricted to cali-

bration of parameters against observations, but could

also include more nebulous adjustment of parameters,

for example, to fit expectations, maintain accepted con-

ventions, or increase accord with other model results.

These more nebulous adjustments are referred to as

tuning. As one example of possible tuning, Van der Sluijs

et al. (1998) discuss evidence that reported values of cli-

mate sensitivity are anchored near the 38 6 1.58C range

initially suggested by the ad hoc study group on carbon

dioxide and climate (Charney et al. 1979) and that these

were not changed because of a lack of compelling reason

to do so. More recently reported values of climate sen-

sitivity have not deviated substantially (e.g., Knutti et al.

2008), having a range of 28–4.58C. The implication is that

the reported values of climate sensitivity are, in a sense,

tuned to maintain accepted convention. Another candi-

date example is the difference in cloud feedback strength

reported between the studies by Cess et al. (1990) and

Cess et al. (1996) wherein a tendency was noted for those

models with the largest cloud feedbacks to be revised

toward more modest values, whereas no countervail-

ing tendency was observed for models initially having

a modest cloud feedback strength. As Cess et al. (1996,

p. 12 794) put it,
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Although substantial changes to GCM cloud parame-
terizations have been implemented since 1990, it is not
clear that a general increase in their accuracy is the sole
explanation for the present trend toward convergence. It
may be that current models are producing similar errors,
while the earlier models produced different errors.

Covariance between model feedbacks is expected to

arise if models are tuned toward a certain climate sen-

sitivity, and this possibility can be explored with a more

detailed version of the dice game. Consider the case in

which feedbacks are drawn from a normal distribution

having a mean corresponding to the CMIP3 feedbacks

(see Table 1) and a standard deviation twice the ob-

served value, where the larger standard deviation is used

because the untuned model parameters would presum-

ably have a wider spread. Model realizations are then

only accepted if they have a climate sensitivity between

2.28–4.28C, the smallest and largest climate sensitivities

implied by the net feedback strength of the 12 CMIP3

models examined here, where climate sensitivity is cal-

culated according to Eq. (1) with a DR23 of 3.7 W m22

and lo of 0.31. Using this criteria, ;40 000 of the 100 000

realizations are accepted, and these have a covariance

structure similar to that diagnosed for the CMIP3 models

(see Table 3). In particular, the accepted models have

anticorrelations between fc and fa of 20.3 and between

fc and flr1wv of 20.6, leading to more than a factor of

3 reduction in the variance of fnet. The one exception is

a lack of cross correlation between fa and flr1wv, whereas

the CMIP3 models give a cross-correlation of 0.6 that is

presumably attributable to one of the mechanisms de-

scribed earlier. Note that, as with the dice game, condi-

tioning upon the climate sensitivity serves to introduce

feedback covariance without the need to actually calcu-

late the individual feedback values.

Tuning climate sensitivity to lie within the observed

spread across the CMIP3 models is a sufficient expla-

nation for the origins of the compensation between fc

and the other feedbacks. However, the simple example

of tuning given here is more explicit than would be ex-

pected in actual model development. Little reason exists

to conclude that a model would be rejected on the sole

basis of an outlying climate sensitivity or that model

feedbacks are intentionally adjusted to compensate one

another. More plausible is that model development and

evaluation leads to an implicit tuning of the parameters,

as suggested by Cess et al. (1996). As another example,

of the 414 stable model versions Stainforth et al. (2005)

analyzed, six versions yielded a negative climate sensi-

tivity. Those six versions were apparently subjected to

greater scrutiny and were excluded because of non-

physical interactions between the model’s mixed layer

ocean and tropical clouds. Scrutinizing models that fall

outside of an expected range of behavior, while rea-

sonable from a model development perspective, makes

them less likely to be included in an ensemble of results

and, therefore, is apt to limit the spread of a model en-

semble. In this sense, the covariance between the CMIP3

model feedbacks may be symptomatic of the uneven

treatment of outlying model results.

5. Discussion and conclusions

Numerical climate models are indispensable tools for

predicting climate. If we are to correctly interpret their

results and optimally design future model studies, we

must carefully track what assumptions and observations

are incorporated into them. Evidence has accumulated

that intermodel differences in climate forcing (Webb

et al. 2006; Schwartz et al. 2007; Kiehl 2007; Knutti 2008),

ocean heat uptake (Raper et al. 2002), and the individ-

ual feedbacks that contribute to climate sensitivity (this

study) act to reduce the spread in global surface warm-

ing realized across models. These compensating model

features may have a sound physical basis, but the specter

of tuning leading to a curtailment of the intermodel

spread in climate sensitivity is difficult to dismiss.

Knutti (2008) argued that parameter covariance across

models is neither unexpected nor problematic if models

are interpreted as having been calibrated to observations.

A problem does arise, however, when model results are

used in conjunction with observations to constrain cli-

mate sensitivity [see reviews by Edwards et al. (2007) and

Knutti and Hegerl (2008)], as this runs the risk of doubly

calling upon the data. Furthermore, comparison between

model results and the climate of the twentieth century

may then be circular (also see Rodhe et al. 2000). Ulti-

mately, we need to know what exactly goes into a model if

we are to correctly interpret its output.

While it seems a large undertaking, a more objective

approach to calibration may be warranted. Standard

datasets could be agreed upon for tuning climate

models, with other data explicitly withheld for testing. Or

perhaps a more readily undertaken course of action is to

test model results against less closely monitored aspects

of the climate, such as features of the seasonal cycle of

temperature (Knutti et al. 2006; Stine et al. 2009) and

TABLE 3. As in Table 2 but for random models that are only

accepted if they have a climate sensitivity between 2.28 and 4.28C.

Albedo Clouds wv 1 lr Net

Albedo 15 (1) 212 (20.3) 22 (20.1) 2

Clouds 212 (20.3) 109 (1) 244 (20.6) 52

wv 1 lr 22 (20.1) 244 (20.6) 50 (1) 5

Net 2 52 5 59
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albedo (Hall and Qu 2006). The paleoclimate record is

also useful in this manner (e.g., Braconnot et al. 2007) in

that it can be more safely assumed that models have

not been calibrated to reproduce these more distant and,

during many epochs, dramatically different climates. Con-

vergence between model results, if not truly driven by

a decrease in model uncertainty or clearly understood as

a result of calibration, could have the unfortunate con-

sequence of lulling us into too great a confidence in model

predictions or inferences of too narrow a range of future

climates. To the extent that it occurs, tuning the models

based on expectation or convention renders the modeling

process a partially subjective exercise from which it is

very complicated to derive a statistical interpretation.

Related discussion can be found in a wide range of papers

(e.g., Hodges and Dewar 1992; Knutti et al. 2010).

As a final note, the CMIP3 archive can be charac-

terized as an ensemble of opportunity, not specifically

designed to span the range of uncertainty in future cli-

mates. A better indication of the range of possible future

climates may be obtained through more exhaustive

searches of the behavior of simpler models under per-

turbation of their parameters (e.g., Stainforth et al.

2005). It may also be sensible to push the most sophis-

ticated models toward generating realizations of future

climate that are as inconsistent as possible with current

predictions, while still being physically sound. Focusing

on maximally inconsistent possibilities seems more likely

to lead to scientific discoveries and to uncover climate

surprises.1 A maximally inconsistent ensemble of state-

of-the-art model realizations would also have the ad-

vantage of suggesting outer bounds upon the range of

climate sensitivity and, therefore, be complimentary to

existing estimates.
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APPENDIX

Model Names

CNRM Centre National de Recherches

Météorologiques

GFDL CM2-0 Geophysical Fluid Dynamics

Laboratory Climate Model

version 2.0

GFDL CM2-1 Geophysical Fluid Dynamics

Laboratory Climate Model

version 2.1

GISS ER Goddard Institute for Space Stud-

ies Model E-R

INM-CM3 Institute of Numerical Mathemat-

ics Coupled Model, version 3.0

IPSL L’Institut Pierre-Simon Laplace

MIROC MEDRES Model for Interdisciplinary Re-

search on Climate, medium-

resolution version

MPI ECHAM5 Max Planck Institute ECHAM5

MRI Meteorological Research Institute

NCAR CCSM3 National Center for Atmospheric

Research Community Climate

System Model, version 3

NCAR PCM1 National Center for Atmospheric

Research Parallel Climate

Model version 1

UKMO HADCM3 Third climate configuration of

the Met Office Unified Model
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