
Supplementary table

Name Ref. Proxy Conversion Duration 4t lon lat
1. Clim. Anl. Cent. [1] instrum. N/A 33 1/12 global —

2. Clim. Res. Unit [2] instrum. N/A 135 1/12 global —
3. Rarotonga Coral [3] Sr/Ca −4◦/(mmol/mol) 270 1/12 -160 -21
4. W167-79 Sed. [4] δ18O 4◦/mil 5210 21 -83 24
5. ODP658 Sed. [5] foram asmb. — 14700 109 -18 20
6. PL07-39 Sed. [6] Mg/Ca — 24500 134 -65 11
7. OCE205-103 Sed. [7] δ18O 4◦/mil 51600 273 -79 27
8. EW9209-1 Sed. [8] δ18O 4◦/mil 190000 632 -43 5
9. TR163-19 Sed. [9] Mg/Ca — 360000 1740 -90 2
10. ODP6777 Sed. [10] δ18O 4◦/mil 771000 1840 -43 6
11. ODP846 Sed. [11] alkenones — 1830000 2000 -90 3
12. ODP927 Sed. [12] δ18O 4◦/mil 772000 2200 -43 6
13. ODP806 Sed. [9] Mg/Ca — 46600 2440 159 2

14. NCEP [13] instrum. N/A 55 1/12 — —
15. Clim. Res. Unit [14] instrum. N/A 135 1/12 — —

16. Cent. England [15] instrum. N/A 345 1/12 0 60
17. Donard Lake [16] varve thick. — 1240 1 -61 67
18. Taylor Ice [17] δ18O 1.5◦C/mil 209000 65 158 -77
19. GISP2 Ice [18] δ18O 1.85◦C/mil 111000 79 -39 73
20. Byrd Ice [19] δ18O 1.5◦C/mil 79800 109 -120 -80
21. Vostok Ice [20] δD — 423000 128 107 -78
22. Dome C Ice [21] δD 0.2◦C/mil 740000 910 124 -75

Table S1: Instrumental, tropical sea surface temperature proxies, and high-latitude surface air temper-
ature proxies used to estimate temperature variability. Each group is ordered according to sampling
resolution. From left to right are the record designation, a primary reference, observation method, the
conversion used for temperature, duration in years, mean sampling interval in years, longitude in ◦E,
and latitude in ◦N. Temperature conversions listed as “—” are nonlinear and are provided by the cited
reference. Conversion for GISP2 is from [22] and for Taylor and Byrd from [23]. The marine δ18Ocalcite
conversion is from [24]. Rarotonga temperature conversion is determined by adjusting the level of the
background spectra to that of average tropical pacific instrumental records from [1]. Fig S2 shows the
spectral estimate associated with individual records.

Supplementary figures and legends

The NCEP reanalysis of surface air temperatures has the advantage of being global, but relies upon
a spectral model, introducing concerns regarding the accuracy of the surface temperature spectra. Thus,
a complimentary analysis is conducted (see Fig S1) using the CRU compilation of instrumental surface
air temperature records [14]. The CRU compilation is not globally resolved, but has the advantage of
containing records extending back as far as 1870. NCEP, proxy, and CRU results all agree with one
another. Fig S2 shows the spectral estimates for individual proxy and instrumental records used in
generating Fig 2.
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Figure S1: Temperature scaling at instrumental periods from the CRU compilation of instrumental
surface air temperature records. (a) Map of the energy at the annual cycle in log-base-ten ◦C2/ds. (b)
β computed between 1 month and 100 years after removing the energy associated with the annual cycle
and its higher harmonics. Note that the scaling indicated by the colorbar is inverted. (c) Spectra binned
according to annual period energy and averaged. In this case, the annual cycle and its higher harmonics
are removed prior to averaging, unlike in fig 1. Black lines indicate power-law fits to the continuum.
The axes are logarithmic and the shading corresponds to the colorbar in panel a. The β and average
magnitude of the continuum both scale with the annual variability and are in agreement with the NCEP
results.
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Figure S2: Spectral energy estimates for individual proxy and instrumental temperature records. The
first seven panels are for high-latitude land temperatures and the last twelve are for tropical sea-surface
temperatures. The title gives the name of each record and the y-axis indicates the data type. The y-axis
is in units of ◦C2/ds and the x-axis is in units of cycles/year. Axes are logarithmic. Daggers in the upper
right hand portion of each plot indicate the approximate 95% confidence level, where the horizontal
dash indicates the level of the background continuum. Fig 2 shows these spectra plotted together after
averaging according to data type. Data types are grouped by color.
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