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With two-thirds of the total Indian population employed by the agricul-

ture sector, changes in Indian monsoon precipitation have widespread im-

plications for human welfare. Increased extreme precipitation since 1950 has

been widely reported for Central India. Major studies have relied upon the

gridded daily precipitation observations provided by the India Meteorolog-

ical Department (IMD), which assimilate observations from a variable net-

work of weather stations. Replicating the IMD’s interpolation method on satellite-

based precipitation observations, however, indicates that temporal changes

in the observing weather station network introduce a jump in the record to-

ward more extreme rainfall after 1975. Trends evaluated across this jump are

suspect, and trends evaluated subsequent to it are insignificant (p > 0.1).

This positive bias may also mask declines in average monsoon rainfall. Greater

accuracy in these trends may resolve distinctions between climate model sim-

ulations of future changes. Access to the underlying data from IMD rain-gauges

would facilitate improved rainfall reconstruction.

Keypoints:

• A method is introduced to diagnose how changes in gauge locations bias

rainfall estimates.

• Central Indian rainfall estimates from 1951-2016 are biased toward in-

creasing extreme rainfall.
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Plain Language Summary

Previously reported trends in daily monsoon rainfall since 1950 have been estimated

using interpolated weather station observations released by the India Meteorological De-

partment. The number of reporting weather stations changes over time, and poor coverage

by weather stations can overlook extreme rainfall events. By applying the interpolation of

this changing network to satellite-based rainfall data, we show that the changing coverage

of weather stations in the Indian rainfall data leads to spurious increases in extreme rain-

fall. This suggests that previously reported trends of extreme rainfall are biased positive.

Access to the raw weather station data would improve our ability to track changes in the

Indian monsoon and assess modeled predictions given climate change.

1. Introduction

Extreme precipitation events in South Asia can translate to catastrophic loss of life and

displacement of millions [e.g. Sharma and Hussain, 2017]. A number of studies have noted

increases in the frequency, intensity, and spatial variability of extreme rainfall in Central

India since 1950 [Goswami et al., 2006; Rajeevan et al., 2008; Roxy et al., 2017; Krish-

namurthy et al., 2009; Singh et al., 2014; Ghosh et al., 2012; Malik et al., 2016]. Studies

agree on the apparent increase of spatially aggregated metrics of extreme rainfall, defined

as the count of days with rainfall greater than 100 mm day−1 summed over gridboxes

in Central India, but extreme rainfall trends taken over smaller domains or individual

locations are heterogeneous and of varying statistical significance [Krishnamurthy et al.,

2009; Ghosh et al., 2012; Malik et al., 2016; Vinnarasi and Dhanya, 2016; Pai et al., 2015].

Furthermore, observed increases in extremes are concurrent with weak declines in average
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daily monsoon rainfall [Turner and Annamalai , 2012; Bollasina et al., 2011; Singh et al.,

2014].

Analysis of historical changes in extremes has only become possible with the publication

of precipitation data collected by the India Meteorological Department (IMD), gridded at

resolutions of 1◦×1◦ and 0.25◦×0.25◦ [Rajeevan et al., 2006; Pai et al., 2014]. Following the

methods used to produce major global precipitation datasets, the IMD interpolate station

data onto these grids using a distance-based weighted averaging of the nearest weather

stations within a specified search radius [Alexander et al., 2006; Hofstra et al., 2008; Donat

et al., 2013; Rajeevan et al., 2006]. Although of substantial utility, the gridded India

data are nonetheless subject to similar issues of spatio-temporal inhomogeneities from

differences and changes in collection methods that have been noted for other precipitation

data-sets [Adler et al., 2003; Alexander et al., 2006; Hofstra et al., 2008, 2010; Donat et al.,

2013]. Interpolation methods used are well-suited to taking an area-weighted mean but

smooth the geographic variability of precipitation [Hofstra et al., 2010; King et al., 2013].

Furthermore, variations in collection interval, topographical influences on precipitation,

and type of rain gauge used can introduce spatial heterogeneity, and changes in the weather

station network through time can bias time trends in rainfall [Alexander et al., 2006; King

et al., 2013].

Restricting interpolation to stations that have coverage for the majority of a time-

interval helps guard against inhomogeneities from changing coverage [Rajeevan et al.,

2006; Goswami et al., 2006; Donat et al., 2013; Harris et al., 2014]. Accordingly, the

1◦ × 1◦ IMD product only assimilates data from stations that report for at least 90% of
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the 1951-2003 interval, but the number of stations used drops by more than half between

1990 and 2010, a proportional decline also seen in the 0.25◦ IMD data [Rajeevan et al.,

2006]. The potential for bias from changing coverage therefore remains and has been

difficult to quantify without access to the raw precipitation data [Alexander et al., 2006;

Hofstra et al., 2010; Donat et al., 2013; King et al., 2013]. In the following, we introduce

a method for examining the influence of changes in the network of rainfall gauges on the

inference of extremes by applying the IMD’s interpolation approach to satellite rainfall

data. We follow previous studies by focusing on the Central India domain and define

extreme rainfall using a 100 mm day−1 threshold [e.g. Goswami et al., 2006; Rajeevan

et al., 2008]. The 100 mm day−1 threshold is breached for less than 1% of all June

through September days in Central India.

2. Data and Methods

2.1. Counting extreme rain

Extreme rainfall incidence has been typically presented as a single annual estimate over

Central India, a region approximately defined as bounded by 74.5◦E, 86.5◦E and 16.5◦N,

26.5◦N [e.g. Goswami et al., 2006; Singh et al., 2014]. For the 0.25◦ × 0.25◦ IMD data,

this region comprises 1845 gridboxes. The annual count of extreme rainfall events is the

number of days that daily rainfall exceeds the 100 mm day−1 threshold, summed over

these gridboxes for the 122 June-September days in a monsoon season. In keeping with

past studies, we also consider a 150 mm day−1 threshold.
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2.2. Shepard interpolation scheme

Daily precipitation data is available in the form of gridded data sets from the IMD,

which assimilate daily weather station data onto evenly spaced gridpoints using a variant

on the Shepard interpolation method [Shepard , 1968]. To produce the IMD 0.25◦ × 0.25◦

gridded rainfall data-set, each gridded rainfall value on a given day is derived from a

weighted average of up to the four nearest weather stations, n, within a search radius of

1.5◦ [Rajeevan et al., 2005; Pai et al., 2014]. The weight for each observation depends

on the distance, rk, of the station from the center of the gridbox. For each gridded

rainfall value, an average interpolation distance between the gridbox center and the n

stations meeting the search criteria is computed as, h = 1
n

∑n
k=1 rk. In regions with sparse

weather station coverage, the nearest station to the center of a gridbox may be 1◦, or

102 kilometers, away. The variant of Shepard interpolation employed to produce all IMD

gridded precipitation data uses weights, wk, which depend on a distance-based metric

between the gridpoint center and the weather station. The distance metric, sk, is defined

in terms of the search radius, R, and the distance vector, rk, between the gridbox center

and station location,

sk =

r
−1
k , rk <

R
3

27
4R

(
rk
R
− 1

)2
, R

3
≤ rk < R.

(1)

The weight is computed as the product, wk = s2k(1+tk), where tk is a directional weighting

cosine term. For each weather station used to estimate daily rainfall in a gridbox, a

directional weighting term is applied, tk =

∑
j
sj

(
1−

~rk·~rj
rkrj

)
∑

j
sj

, where ~r is a vector from the

center of a gridbox to the station and j iterates across the n stations used in the estimate.
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This interpolation scheme gives similar results in extreme event counts to the simpler

weighting scheme, wk = rk
−2.

2.3. IMD rainfall and station network variability

Although the exact station locations are not provided, the IMD gridded data include

daily counts of reporting stations within each gridbox. For the 1951-2016 interval of the

0.25◦ IMD data, 56% of Central India gridboxes on an average day contain no reporting

stations, 32% have one station, and the remainder have multiple stations. Inferred in-

terpolation distances show variability in annual averages ranging from 0.36◦ in 1971 to

0.24◦ in 1991 (Fig. 1c). In addition to the effects of its temporal variability, the average

geographic placement of the station network has implications for how rainfall is mapped.

The spatial correlation between average rainfall and average interpolation distance from

weather stations is positive at r = 0.44 (Fig. 1). This implies that regions with heavier

rainfall are more sparsely sampled, and that spatial interpolation will play a correspond-

ingly larger role in regions more likely to experience extreme rainfall events.

In order to quantify changes in the observing network, we use a breakpoint analysis. A

breakpoint of 1975 for the annual average interpolation distance from 1951-2016 (Fig. 1c)

is found when minimizing the sum of residual squares of a two-mean model, one mean

taken over values preceding and including the breakpoint and a second mean of values

subsequent. Maps of the average interpolation distance for these two intervals show a

decline in the number of interpolation distances exceeding 0.5◦ (Fig. 1de) and an overall

increase in density. The percent of all interpolation distances greater than 0.5◦ transitions

from 11% until 1975 to 7% over the more recent interval. These changes occur in the
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vicinity of where extreme events are climatologically expected, further indicating that

changes in the network may influence observations of extremes. Of note is that the

1971 dramatic decline in reporting IMD stations in Central India (Fig. 1c) was preceded

by the November 12, 1970 Bhola cyclone in today’s Bangladesh. This cyclone swept

away an estimated quarter-million people and may have been a factor in instigating the

Bangladesh Liberation War [Hossain, 2018]; degradation in the rainfall observing network

may have resulted in their immediate aftermath. We speculate that improved density of

stations between 1972-1975 may be related to the 1972 monsoon failure and demographic

consequences [Drèze and Sen, 1989].

2.4. Replicating interpolation effects through TRMM

To examine the implication of an inhomogeneous, changing network of rain gauges,

it is useful to compare IMD estimates that bear the artifacts of interpolation against

those from the spatially-complete observations of the Tropical Rainfall Measuring Mis-

sion (TRMM). We use the microwave-only subset of the 3-hour TRMM Multi-satellite

Precipitation Analysis 3B42 v.7 data, which have not been adjusted for rain gauge ob-

servations, unlike other available TRMM data-sets. These data are provided at 3-hourly

intervals centered at times starting at 0 UTC and gridded at 0.25◦×0.25◦ from 1998-2015

within 50◦ of the equator [Huffman et al., 2007]. Microwave-sensed rainfall has its limi-

tations in accurately estimating high rainfall rates and may miss short-duration rainfall

events, but TRMM has been shown to be broadly consistent with global gauge data in

capturing extreme daily precipitation, particularly in South Asia [Brown, 2006; Libertino

et al., 2016]. Over Central India, the correlation in monsoon total rainfall between TRMM
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and IMD is r = 0.45 between 1998-2015, but increases to r = 0.71 when excluding the

earliest two years of data.

Integrated to match the IMD daily collection period ending at 3 UTC [Rajeevan et al.,

2005], this TRMM product reports systematically lower daily rainfall totals relative to

IMD. For example, area-averaged mean daily rainfall estimated by TRMM during the

summer season over our region of interest is 5.2 mm day−1, compared to 7.4 mm day−1

in IMD data (Fig. 1a). In order to accommodate this offset, TRMM extremes are esti-

mated according to the matching percentile, where a daily rainfall value of 100 mm day−1

corresponds to the 99.6th percentile in the IMD dataset, when aggregating over Central

India. The estimated extremes time-series in the IMD data-set is very similar if a spatially

variable 99.6th percentile is instead used for detecting extremes, having a correlation of

r = 0.94 with the time-series derived using a fixed 100 mm day−1 threshold. Roxy et al.

[2017] finds a similarly high r = 0.97 using the 150 mm day−1 threshold. We thus set

the threshold for counting extreme precipitation to the 99.6th percentile rainfall value of

each Central India monsoon season of TRMM data. Although the absolute precipitation

amounts estimated from TRMM are generally lower than rain gauge observations, satellite

data preserve spatio-temporal variation [Libertino et al., 2016].

The sparse and changing IMD station network is examined relative to the complete

and constant spatial coverage of the TRMM dataset using a technique similar to that

employed to estimate overlooked hurricanes [Vecchi and Knutson, 2010]. Specifically, a

given monsoon season of TRMM precipitation is repeated across the 66 monsoon seasons

of the 1951-2016 IMD data. For gridboxes where the IMD data have no stations, the
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values from the spatially-complete TRMM data are replaced by interpolated values from

the nearest gridboxes having stations using Shepard interpolation (Section 2.2). Station

distance is taken as the length between gridbox centers. In Fig. 2, the August 7, 2007

TRMM rainfall is interpolated using the IMD station networks corresponding to August

7, 1971 and August 7, 1993. The count of extreme events for each of these interpolations

is markedly different. The rainfall collected on August 7, 2007 corresponded to a monsoon

deep depression [India Meteorological Department , 2008] and was part of a South Asian

monsoon season that had already displaced 20 million people [CNN , 2007]. The original

TRMM data of this deep depression showed 60 extreme events; interpolation according to

the 1971 network shows only 33 extreme events; and interpolation using the denser 1993

network captures 52 events. This example illustrates the tendency of a sparse network to

underestimate the true count of extreme events. Interannual changes to extreme rainfall

in the resulting time-series are exclusively a function of the interpolation of the station

network. Eighteen such time-series are realized, one for each year of available TRMM

data from 1998-2015.

3. Results and Discussion

A monsoon season of interpolated TRMM data always underestimates the count of

extreme rainfall events of the original TRMM data, omitting 17.8% of extreme events

across all years of interpolated TRMM data. Such underestimation is not strictly neces-

sary, with 6.5% of individual days actually showing higher counts, but is strongly favored

because the smoothing inherent to IMD’s interpolation method suppresses the occurrence

of extremes.
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Anomalies in the occurrence of extreme rainfall found in the surrogate TRMM time

series show a breakpoint (Fig. 3a) of 1975, identical to the breakpoint found for the

annual average interpolation distance (Fig. 1c). Although there is variability across

these anomaly time-series depending on the year of TRMM data used, a general shift

toward higher counts is apparent across 1975. The cause of the apparent increase is that

station densities increase after 1975, east of 78◦, a region with high daily mean rainfall

(Figs. 1cde). The low density of weather stations in this region may be tied to its history

of colonial land tenure systems and the related limited delivery of public goods, relative

to other parts of India [Banerjee and Iyer , 2008]. Interpolation of the varying station

network, which shows a net rise in density of stations, imparts a positive bias to estimates

of extreme rainfall trends across the mid-1970s, absent actual interannual changes to the

South Asian monsoon. Note that the effects of interpolation cannot be deconvolved from

true rainfall variability, in general, even given knowledge of the exact station locations,

because the smoothing inherent to IMD’s interpolation approach suppresses variability

from individual stations.

It is useful to revisit the significance of trends in extreme rainfall in light of the presence

of observational bias. We rely on a bootstrapping technique to evaluate the statistical sig-

nificance of linear trends in the IMD data because climate extremes do not obey Gaussian

statistics [Efron and Tibshirani , 1993]. For each of these IMD extreme event time-series

(Fig. 4), a null hypothesis of zero trend is tested by sampling these values with re-

placement and equal probability to form 104 surrogate time-series. The 104 simple linear

regression trends of these time-series then provide a sample distribution for our null.
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Consistent with major studies of extreme rainfall over Central India using IMD data,

the positive extreme rainfall trends since 1950 would appear significant, absent accounting

for any breakpoints (p < 0.01) [Goswami et al., 2006; Roxy et al., 2017]. However, the

1973-2016 time-trends of an increase of 4.67 extreme events per year using the 100 mm

day−1 threshold and 2.12 extreme events per year using the 150 mm day−1 threshold are

insignificant at the 90% confidence level (p> 0.1, two-sided test, Fig. 4). While the 1974-

2016 trend with the 100 mm day−1 threshold appears significant at p=0.09, the fact that

the trend for the corresponding 150 mm day−1 threshold and trends for both thresholds

beginning at 1975 and 1976 are not significant (p > 0.1) raises concerns of the suitability

of a trend metric that is so sensitive to start year. A large change in station network is

apparent in the 2000s, and it would also be possible to exclude data after 2000 on the

basis of further changes in station network density, but the resulting interval also provides

no significant evidence for a trend, as can be anticipated given the omission of the high

extreme event counts in the 2000s.

A concern is that the observed biases are peculiar to the TRMM precipitation data. To

test this, we apply the same interpolation to each monsoon season of the gridded IMD

data, assuming the counterfactual that each day of these rainfall data is an accurate and

complete spatial field. The range of the anomaly extreme rainfall counts from these IMD

interpolations is presented in Fig. 3a by the gray shading. A breakpoint of 1973 is obtained

for the average interpolated IMD time-series. The increase across the 1973 breakpoint is

as high as 91 extreme events (> 100 mm day−1) using the re-interpolated 2007 IMD data.

For the TRMM data, the maximum offset at 1975 is 71 events for 99.6th percentile events
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when using the re-interpolated 2011 monsoon season. The simulated network changes are

only those that can be directly inferred from the daily gridded station counts included

in the IMD data. More detailed information, such as station locations and reporting

intervals, could yield larger changes, as could shifts in instrumentation or measurement

practice that may accompany changes in network coverage.

We repeat the interpolations of the TRMM data using the station network inferred

from the 1951-2015 1◦ IMD data. These data use 1,803 stations, in contrast to the 6,955

used in the 0.25◦ data [Rajeevan et al., 2005; Pai et al., 2014]. For the daily 1951-2015

1◦ gridded IMD station counts, daily geographic maps of station locations are estimated

by randomly sampling, without replacement, the 0.25◦ TRMM boxes contained within

each 1◦ IMD gridbox to match the listed count of stations. Rainfall at these 1◦ gridbox

centers are then interpolated according to these daily maps, in effect treating the TRMM

0.25◦ gridboxes as stations. The expected count of extremes, again using the 99.6th

percentile as a threshold, is taken from the nearest-neighbor interpolation of the 0.25◦

TRMM data onto the IMD 1◦ grid. This is analogous to the presence of a reporting

weather station at each 1◦ gridbox center. The combination of a lower-resolution grid

and a sparser network yields even greater shortfalls in estimated extremes. Relative to

the 1◦ nearest-neighbor TRMM rainfall dataset described above, the 1◦ TRMM dataset

interpolated according to the 1◦ IMD stations captures 45% fewer extreme events. As a

fraction of expected extremes, these time-series show greater interannual variance than

those from the interpolated 0.25◦ TRMM data. The largest positive 1951-2015 trend in

extremes in these 1◦ interpolated data is derived from the 2007 TRMM season, with an
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increase of 5.12 extreme events per fifty years, which is over a quarter of the trend of 18.4

extreme events per fifty years in the 1◦ IMD rainfall data.

Results are therefore qualitatively consistent between the 1◦ and 0.25◦ data, and we

focus on the 0.25◦ results, which caution against taking trends of extreme rainfall using

the gridded IMD data across the mid-1970s. Foregoing analyses of extreme rainfall that

depend on IMD datasets [Singh et al., 2014; Rajeevan et al., 2008; Goswami et al., 2006;

Ghosh et al., 2012; Roxy et al., 2017] are presumably subject to the biases that we infer.

Although to a lesser extent than for extreme values, mean precipitation is also suscepti-

ble to biases from interpolation as a result of the long-tailed distribution of precipitation.

Average daily monsoon rainfall is at the 80th percentile of all monsoon days. Recent

studies indicate weak declines in mean summer rainfall in Central India [Turner and An-

namalai , 2012; Singh et al., 2014]. We estimate a decline of 0.29 mm day−1 per fifty

years for the Central India area-averaged daily monsoon rainfall for the 1951-2016 IMD

data, but the interpolated TRMM data suggest that this may be underestimated. Scaling

for the 43% greater value of IMD mean daily rainfall over that of TRMM, an equivalent

positive trend of 0.06 mm day−1 per fifty years is obtained from interpolating the 2008

TRMM data with the IMD network. On average, interpolated TRMM data show a posi-

tive trend of 0.02 mm day−1 per fifty years. The TRMM data interpolated according to

the 1951-2015 1◦ IMD station network suggests an even larger positive bias in the trend

of area-averaged mean daily monsoon rainfall, as a fraction of the observed 1◦ IMD trend.

The interpolation of 2007 TRMM data gives a positive 1951-2016 trend that is 28% of

the magnitude of observed drying of area-averaged mean daily monsoon rainfall in the 1◦
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IMD data. The average positive bias across these years of TRMM data interpolated to

the IMD 1◦ station network is 14% of this magnitude.

In addition to affecting statistics of daily rainfall, the sparse station network may have

implications for inferred changes in the incidence and spatial characteristics of low pressure

systems, both due to the high proportion of total monsoon rainfall for which these systems

are responsible and because the station network is least dense near the eastern coast of

India, where synoptic activity is highest (Fig. 1b and see Fig. 2a of Ajayamohan et al.

[2010]). For example, 2006 boasts the highest number of extreme rainfall events across

the IMD record, but over a third of these events are accounted for by two depressions

that made landfall in East India, one occurring from July 2-5 and the second from August

2-5 (black bars in Fig. 4) [India Meteorological Department , 2007]. Sparse networks can

cause errors in estimates of the extent of depressions (i.e. Fig. 2), and because the

frequency and magnitude of such depressions varies across India, the potential for missing

extreme rainfall events also varies. Raw weather station data and averaged precipitation

metrics over smaller homogeneous regions may be less susceptible to the biases we identify

[Krishnamurthy et al., 2009; Guhathakurta and Rajeevan, 2008; Malik et al., 2016].

Estimation of the historical variability of monsoon precipitation has long motivated

important studies on linked global atmospheric phenomena and the local influence of

anthropogenic warming and aerosol emissions [Walker , 1923; Jayasankar et al., 2015;

Mukherjee et al., 2018; Bollasina et al., 2011]. The effects of anthropogenic warming

on the summer Indian monsoon are uncertain [Allen and Ingram, 2002; O’Gorman and

Schneider , 2009; Jayasankar et al., 2015; Mukherjee et al., 2018]. Quantifying the biases
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induced by a changing observational network is important for reconciling and attributing

observed trends with modeled precipitation estimates under different emissions scenarios.

Access to raw weather station observations would allow for more accurate estimates of

change in the South Asian monsoon phenomena and their uncertainties. Like the Indian

data, other precipitation measurements from around the globe are often available only

at the discretion of state restrictions on data publication. International collaborations

facilitating the analysis of raw rain gauge data seem critical for accurate evaluation of

historical changes in precipitation [Alexander et al., 2006; Donat et al., 2013; Yatagai

et al., 2012].
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Table 1. Trends and p values for null hypothesis of no trend in extreme rainfall events

estimated from 0.25◦ × 0.25◦ IMD gridded precipitation data, using 104 surrogate time-series.

100 mm day−1 150 mm day−1

Time period events yr−1 p events yr−1 p
1951 - 2016 6.14 < 0.01 2.88 < 0.01
1951 - 2000 6.11 < 0.01 2.76 < 0.01
1973 - 2016 4.67 0.17 2.12 0.14
1974 - 2016 5.96 0.09 2.44 0.11
1975 - 2016 5.40 0.15 2.40 0.13
1976 - 2016 5.65 0.14 2.71 0.11
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