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ABSTRACT

3



Conversion of native ecosystems to cropland and the use of irrigation are

considered dominant pathways through which agricultural land use change al-

ters regional climate. Recent research proposes that increases in cropland pro-

ductivity, or intensification, also influences climate through increasing evapo-

transpiration. Increases in evapotranspiration are expected to have the greatest

temperature influence on extremely hot summer days with high vapor pressure

deficits. Here we assess the generalizability and importance of such relation-

ships by examining historical land use and climate trends in seven regions

across the globe, each containing a major temperate or subtropical cropping

area. Trends in summer high temperature extremes are sequentially compared

against trends in cropland area, area equipped for irrigation, precipitation, and

summer cropping intensity. Trends in temperature extremes are estimated us-

ing quantile regression of weather station observations, and land use data are

from agricultural inventories and remote sensing. Intensification is the best

predictor of trends in extreme temperatures amongst the factors that we con-

sider, and is generally associated with trends that are 0.2–0.4◦C per decade

cooler than in adjacent regions. Neither cropland area nor precipitation trends

are systematically associated with extreme temperature trends across regions,

though high temperatures are suppressed over those portions of Central North

America and East Asia experiencing growth in irrigation. Both the temper-

ature trends associated with intensification and increased irrigation can be

understood as a consequence of increased latent cooling. These results under-

score that the weather experienced by crops is not entirely external, but also

depends on agricultural practices.
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1. Introduction44

Climate is a central determinant of crop distribution and productivity, yet climate itself can45

be influenced by agricultural land use and land cover via biophysical changes to surface albedo,46

rates of evapotranspiration, and surface roughness (Foley et al. 2003; Brovkin et al. 2004; Fed-47

dema et al. 2005; Diffenbaugh 2009; Pielke Sr. et al. 2011). Conversion of native ecosystems to48

cropland and the use of irrigation have long been considered dominant pathways through which49

agricultural land use alters regional temperatures. In the United States, cropland expansion altered50

albedo and evapotranspiration patterns and is thought to have cooled growing season temperatures51

(Bonan 1999, 2001; Oleson et al. 2004; Twine et al. 2004; Diffenbaugh 2009). Irrigation increases52

evapotranspiration and decreases temperatures, a relationship that has been documented in the US53

Great Plains (Adegoke et al. 2003; Mahmood et al. 2006; Bonfils and Lobell 2007; Lobell et al.54

2008; Harding and Snyder 2012; Lu et al. 2015), the Central Valley of California (Bonfils and Lo-55

bell 2007), Sudan (Alter et al. 2015b), and Asia (Bonfils and Lobell 2007). More recently, other56

changes to cropland management have been shown to alter climate. Multiple-cropping practices57

influence the seasonality of evapotranspiration in the North China Plain (Jeong et al. 2014) and58

the Brazilian Cerrado (Spera et al. 2016), and are associated with higher temperatures during the59

inter-cropping period (Jeong et al. 2014). No-till practices can increase post-harvest albedo, and60

model simulations suggest that increased adoption of no-till on winter-season crops in Western61

Europe could substantially cool summer extreme temperatures (Davin et al. 2014).62

Another recently proposed pathway by which agricultural land use can influence climate is63

through the intensification of crop production on existing croplands and an associated increase64

in evapotranspiration. Mueller et al. (2016) demonstrated century-long cooling trends in the US65

Midwest that were proportional to trends in intensification documented in crop survey data, where66
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intensification was defined as a positive trend in local crop biomass production. Cooling was ob-67

served for both irrigated and rainfed croplands that have undergone intensification, but with the68

important caveat that temperatures revert to historically high magnitudes during drought condi-69

tions in rainfed regions. These results are broadly consistent with studies of climatic trends for70

cropland in the Canadian Prairies (Gameda et al. 2007; Betts et al. 2013), where it was found that71

summer maximum temperatures decreased over the past several decades. Gameda et al. (2007)72

and Betts et al. (2013) attributed this pattern to greater landscape productivity and evapotranspi-73

ration due to declines in summer fallow practices, although the US Midwest findings (Mueller74

et al. 2016) suggest that increased productivity on planted areas also contributed to changes in75

evapotranspiration across the Canadian Prairies.76

In addition to observational evidence from historical data, the expectation that higher produc-77

tivity landscapes exhibit greater evapotranspiration accords with a number of field-scale studies.78

Vegetation productivity is tightly coupled to rates of evapotranspiration, and vegetation medi-79

ates the relationship between surface energy fluxes and soil moisture (Williams and Torn 2015).80

High-nitrogen application has been shown to result in both a larger magnitude (Jones et al. 1986;81

Rudnick and Irmak 2014) and duration (Rudnick and Irmak 2014) of peak evapotranspiration in82

maize. Nitrogen stress can otherwise be an important control on evapotranspiration through in-83

hibiting leaf area, stomatal conductance, and root development (Jones et al. 1986; Chapin III et al.84

1988), but is largely alleviated in high-intensity cropping systems. Some crops are now managed85

at much greater planting densities (Duvick 2005), a change that can also lead to greater rates of86

evapotranspiration (Jiang et al. 2014). Adoption of conservation tillage practices, common in the87

US (Horowitz et al. 2010), suppresses soil evaporation early in the season and thus can conserve88

water for transpiration (Gallaher 1977). Changes in cultivars may also influence transpiration char-89
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acteristics, as more recent cultivars tend to have higher rates of stomatal conductance and lower90

canopy temperatures (Fischer et al. 1998; Barker et al. 2005; Roche 2015).91

Given that the pace of cropland expansion has been relatively slow since 1950 (Ramankutty and92

Foley 1999), and that widespread increases in crop productivity occurred during this time period93

due to the adoption of “Green Revolution” technologies and management practices (Tilman et al.94

2002), intensification of existing croplands may now be a dominant mechanism through which95

agricultural practices change regional climate. However, this relationship has only been docu-96

mented in the the US Midwest (Mueller et al. 2016), an area that exhibits the most pronounced97

peak summer vegetation growth of anywhere on the planet (Guanter et al. 2014; Mueller et al.98

2016). It is unclear whether more modest increases in crop productivity would significantly in-99

fluence high temperature trends elsewhere, and variability in cropping practices, soils, and atmo-100

spheric conditions also raise questions about the geographic generalizability of the US Midwest101

intensification-cooling relationship. Examination of other regions provides an opportunity to test102

whether intensification is systematically related to a suppression of high temperatures.103

Here we examine the relationship between extremely hot maximum temperatures and summer104

cropland intensification, as well as the relative importance of intensification alongside changes105

in cropland area, irrigation growth, and precipitation, by analyzing land use and extreme tem-106

perature trends for seven regions across the globe (Figure 1). The management (Mueller et al.107

2012; Mueller and Binder 2015; Siebert et al. 2015), productivity (Monfreda et al. 2008; Ray et al.108

2012, 2013), and phenology (Sacks et al. 2010; Guanter et al. 2014) of crops varies widely across109

regions, providing a useful series of case studies to examine land–atmosphere connections with110

observational data. The analysis is restricted to subtropical and temperate regions due to greater111

availability of high-quality weather station records and the presence of well-defined seasonality in112

extreme temperatures and evaporative demand. We focus on summer as the season when evap-113
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orative demand is greatest and when temperature extremes generally have the greatest societal114

consequences, although crop damages from extreme heat will depend upon the specific timing of115

the exposure relative to sensitive periods of crop development (Gourdji et al. 2013; Butler and116

Huybers 2015). Consistent with Mueller et al. (2016), we examine the 95th percentile of sum-117

mer daily maximum temperatures using quantile regression. Hot extremes exhibit unique trends118

relative to lower percentiles of the temperature distribution (McKinnon et al. 2016; Mueller et al.119

2016), and are particularly sensitive to changes in evapotranspiration (Seneviratne et al. 2010;120

Mueller and Seneviratne 2012; Huybers et al. 2014; Mueller et al. 2016).121

2. Data and Methods122

The ability to document global-scale relationships between climatic trends and changes to sum-123

mer cropping intensity, irrigation, and cropland area is only recently possible due to the release of124

several global historical land use datasets used in coordination with weather station and satellite125

observations. Below we detail our geographic areas of interest, the analysis of land use trends, and126

the analysis of temperature and precipitation trends.127

a. Regions and major cropping systems128

Relationships between agricultural land use and climate trends are examined across seven broad129

regions (orange lines in Figure 1). We also identify grid cells comprising an intensified major130

cropping area in each region; these grid cells are utilized solely to characterize local crop phenol-131

ogy in a series of descriptive plots. To define these grid cells, we first delineate the most important132

continuous cropland regions (latitude and longitude boundaries are shown in the dashed lines in133

Figure 1). Grid cells within these boundaries are then classified as a “major cropping area” if they134
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contain greater than 50% cropland according to a circa 2000 dataset (Ramankutty et al. 2008) and135

exhibit positive trends in our summer cropping intensity index, defined below.136

b. Cropland area trends137

Historical cropland area is estimated from agricultural census records in combination with land138

cover classifications from remote sensing Ramankutty and Foley (1999). The dataset has been139

recently updated (N. Ramankutty, personal communication, February 2014) and is now available140

at half-degree resolution between 1961–2007. Trends are fit over this available interval using141

simple linear regression (Figure 2a).142

c. Irrigated area trends143

Data on area equipped for irrigation have been compiled by Siebert et al. (2015) into a gridded144

dataset at 5 arc-minute resolution covering the years 1900–2005, with maps available every ten145

years from 1900–1980 and every five years after 1980. This dataset is based on agricultural census146

information and detailed local land use maps. We utilize the AEI–EARTHSTAT–IR version of147

the dataset that is constructed using the update to Ramankutty and Foley (1999) cropland areas.148

Trends are fit to grid cell area equipped for irrigation (AEI) values for 1961–2005 (Figure 2b),149

where values for 1961 are calculated by linearly interpolating between 1960 and 1970 values in150

each grid cell. We fit trends at the native resolution of the irrigation dataset and all subsequent151

gridded data, then upscale by averaging to half-degree resolution so that all datasets are on a152

common grid.153
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d. Summer cropping intensity trends154

To evaluate trends in summer cropping intensity (where a positive trend is considered “cropland155

intensification”), we develop an index of Summer Cropping Intensity (SCI) that quantifies yearly156

summer crop biomass production across the landscape in units of grams of Carbon per square157

meter produced over the summer growing season, i.e. g C m−2 summer−1. Yearly crop biomass158

production can be calculated from historical crop-specific harvested area and yield data, along with159

parameters that relate yields to total crop biomass. Unfortunately, these datasets do not also detail160

the seasonality of crop growth, a crucial consideration since changes to crop evapotranspiration161

characteristics only plausibly influence summer temperature extremes when crop growth occurs162

during the summer. Many temperate areas grow some crops during a “winter season”, when the163

crop is planted in the autumn and is harvested in the late spring or early summer, so a summer164

growing season cannot be assumed. In earlier work focused on the US, Mueller et al. (2016)165

were able to isolate statistics for summer crop types, but this is not possible with the global crop166

datasets that we employ. To incorporate the seasonality of crop growth, we use remote sensing167

data to calculate the fraction of vegetation growth occurring during summer (“vegetation summer168

fraction”, or VEGsf). We then utilize VEGsf as a fractional weight on crop biomass to convert169

annual cropping intensity to SCI. The crop datasets and calculations are described in greater detail170

below.171

Calculating annual crop biomass production: To obtain trends in crop biomass production for172

six major crops, we first calculate the net primary productivity per harvested area (NPPha, in units173

of g C m−2 yr−1) of each crop from data on the yield (Y, converted to units of g/m2) of harvested174

crop products, as well as the dry fraction of the harvested product (DF, g/g), the carbon content (C,175
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gC/g), the harvest index (HI, g/g), and the aboveground fraction (AF, g/g). Following Monfreda176

et al. (2008),177

NPPhac,i,y =
Yc,i,y DFc C
HIc,y AFc

. (1)

where c is the crop type, y is the year, and i represents the index of each grid cell. We use gridded,178

crop-specific yield data spanning the years 1961–2008. Yield data for maize (grain, not silage),179

wheat, soybean, and rice are from Ray et al. (2012), and are generally resolved sub-nationally180

for major agricultural countries, although the temporal frequency of source data depends upon181

availability. Yield data for barley and rapeseed are from Monfreda et al. (2008), and are resolved182

sub-nationally for the year 2000. To obtain a historical time series, we scale these base maps183

to match the national-level average yield data from the United Nations Food and Agricultural184

Organization (FAO 2016), while preserving sub-national spatial heterogeneity in yields from 2000.185

Values for DF, C, AF, and modern HI are directly from Monfreda et al. (2008). The harvest index186

of some crops has changed as a result of crop breeding, and historical values are reported in187

Table 1. In lieu of detailed data about the temporal evolution of HI, we assume a linear scaling188

between historical and modern values from 1910 to 1980, with modern values used for 1980 and all189

subsequent years. The use of historically varying HI values decreases the calculated intensification190

trend and works in opposition to the yield trends, but the latter are much larger and dominate the191

intensification trends. Our results are not sensitive to the use of historically varying harvest indices.192

Harvested area is relevant for considering the extent to which cropland evapotranspiration char-193

acteristics influence temperature. A large increase in evapotranspiration across a small field would,194

obviously, have limited influence on regional air temperatures. Thus, we multiply NPPha by the195

harvested area for each crop (HAc, in units of m2) relative to the total area within each grid cell196

(TA, m2), giving an area-normalized net primary productivity metric (NPPan),197
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NPPani,y =
6

∑
c=1

NPPhac,i,y HAc,i,y

TAi
. (2)

Harvested area data for our six crops are from the same sources (Monfreda et al. 2008; Ray et al.198

2012; FAO 2016) as the yield data. The units for NPPan remain g C m−2 yr−1, although the m−2
199

is now relative to grid cell area and not harvested area. Trends in NPPan are fit for 1961–2008200

(Figure 3a), and provide a useful measure of cropland intensification for our six crops. However,201

as previously mentioned, these estimates do not indicate whether that intensification would have202

occurred during a summer growing season, or at other portions of the year.203

Weighting by the vegetation summer fraction to calculate SCI: The GOME-2 satellite record of204

sun-induced chlorophyll fluorescence (SIF) (Joiner et al. 2013) is our preferred source of data for205

calculating VEGsf. These data are available at monthly, 0.5 degree resolution. Chlorophyll fluo-206

rescence has previously been shown to exhibit closer correspondence with cropland gross primary207

productivity (GPP) from eddy flux towers than reflectance-based indices (Guanter et al. 2014).208

However, the relatively coarse resolution implies that the fluorescence data captures photosynthe-209

sis from both native and managed vegetation. This limitation is more pronounced for heteroge-210

neous landscapes (e.g. Western Europe) as opposed to those that are comparatively dominated by211

crops (e.g. the North American Corn Belt).212

Using the SIF data, we calculate the fraction of vegetation growth occurring during the summer213

months (VEGsf). Assuming a simple linear scaling between SIF and GPP, the units for VEGsf are214

(g/summer)/(g/year). Summer is defined as June–August (JJA) in the Northern Hemisphere and215

December–February (DJF) in the Southern Hemisphere. Thus, for the Northern Hemisphere,216
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VEGsfi =

8
∑

m=6
SIFm,i

12
∑

m=1
SIFm,i

, (3)

where m is the month. Any negative SIF values, which do arise due to measurement errors, are set217

to zero prior to calculating VEGsf. We use the average summer fraction during the recent years218

of 2007–2012 (Figure 3b), and we test whether this fraction has varied over time using NDVI219

data as described below. Summer fraction is not calculated for areas with insufficient signal, here220

specified as monthly average fluorescence less than 1/12 mW m−2 sr−1 nm−1 (these areas are221

shown as light gray in Figure 3b).222

Our final summer cropping intensity index, SCI, is constructed by using VEGsf to weight223

NPPan, and is calculated for all locations in the extratropics,224

SCIi,y = NPPani,yVEGsfi. (4)

Trends in the SCI index (Figure 3c) retain the prominent NPPan trends in summer cropping225

areas (e.g. the US Corn Belt and the Canadian Prairies) while NPPan trends in predominantly226

winter-cropping areas are down-weighted (e.g. in portions of the US Southern Great Plains and227

Southern Australia).228

VEGsf sensitivity analysis: An alternate source of data for calculating VEGsf is the Global In-229

ventory Monitoring and Modeling System (GIMMS) Normalized Difference Vegetation Index230

(NDVI) record generated from the Advanced Very High Resolution Radiometer (AVHRR) (Tucker231

2014). These data are available bi-monthly at 5 arc-minute resolution and span 1982–2013. De-232

spite the aforementioned drawbacks of reflectance-based indices, this NDVI data permits an al-233

ternate estimation of SCI for comparison against our standard SIF approach. To permit for direct234

comparison against the SIF estimate, NDVI seasonality is computed over the 2007–2012 interval.235
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SCI is calculated at the 5 arc-minute resolution permitted by the NDVI data, and then averaged236

to 0.5 degree resolution. The long temporal record also allows us to examine the extent to which237

VEGsf has changed over time, a topic we return to in Section 3 h.238

e. Crop calendar data239

Additional information about the seasonal cycle of crop development can be determined from240

global crop calendar data, and we use these data as contextual information for interpreting our241

findings. Average regional planting and harvest dates by crop type, as well as typical ranges242

around those means, are taken from the Sacks et al. (2010) database. These data do not include243

information about trends in planting and harvest dates as influenced by management practices and244

climate trends (e.g. Kucharik 2006). Spatial averages across major cropping regions are calculated245

for each crop type, where averages are weighted according to grid cell crop harvested areas (Mon-246

freda et al. 2008). Planting and harvest dates for summer rapeseed in Canada are from USDA247

(1994), because Sacks et al. (2010) only contains data on winter rapeseed. We also determine crop248

harvested areas (Monfreda et al. 2008) circa 2000 as fractions of the total land area within each249

major cropping system. These values are shown in planting and harvest date figures to indicate250

the relative importance of various crops in each region. Planting and harvest data are presented251

alongside seasonal cycles of SIF for further context on local phenology in each major cropping252

area.253

f. Climate trends254

Weather station data is from the Global Historical Climatology Network – Daily dataset255

(GHCND) (Menne et al. 2012). Observations with negative quality flags are removed. In the256

interest of achieving a relatively complete geographic sample, we include any station where a257
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minimum of 60% of days (after quality filtering) report values of maximum temperature from258

1961–2014. All regions have average coverage considerably above this baseline, as shown in259

Table 2.260

Quantile regression (Koenker and Bassett 1978) is utilized to assess trends in temperature ex-261

tremes, and we focus on trends in the 95th percentile of daily maximum temperature observations262

during the summer months of June–August in the Northern Hemisphere and December–February263

in the Southern Hemisphere (Figure 4). Temperature data were originally recorded in Fahrenheit264

and Celsius at different levels of precision, and then were rounded to standard increments of 0.1◦C265

for inclusion in GHCND. This heterogeneity poses problems for understanding trends in extreme266

temperatures, since quantile regression assumes continuously distributed data and is biased by267

rounding artifacts. We correct for the effects of rounding by adding an appropriate amount of jitter268

to each observation to approximately correct each temperature record to its unrounded distribution,269

where jitter amplitude is determined from the results of a precision-decoding algorithm (Rhines270

et al. 2015).271

Although daily temperature observations are the most suitable record for directly examining272

large-scale changes in extreme temperatures, station data is subject to a number of uncertainties.273

Station moves, changes in the time of observation, and shifts in equipment can all influence tem-274

perature observations (Quayle et al. 1991; Pielke Sr et al. 2007; Menne and Williams 2010). Ex-275

amination of trends in temperature extremes in North America, using the same GHCND data and276

quantile regression approach, shows consistency between neighboring stations as well as between277

stations and reanalyses (Rhines et al. 2016), indicating that the influence of inhomogeneities in the278

daily temperature data are minor relative to trends in extreme temperature. Furthermore, pairwise279

comparison of summer temperature trends calculated from GHCND and from nearby hourly sta-280

tions sampled using a consistent time of day window indicate that time-of-observation biases are281
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small compared with typical magnitudes of summer temperature trends (McKinnon et al. 2016).282

Within the US, the widespread change in thermometers during the 1980s is thought to have intro-283

duced a cool bias to maximum temperatures of around 0.4◦C (Quayle et al. 1991). We suggest284

that these inhomogeneities and uncertainties in the data, while important for understanding the285

absolute magnitude of temperature trends, will have less influence on our identification of land286

use effects, given our focus on spatial differences in temperature trends. Moreover, the extent to287

which results are consistent between countries with different weather station networks serves as288

an important check on the robustness of our results.289

Trends in precipitation are analyzed for the same subset of stations used to examine temperature290

trends. Precipitation can influence extreme temperatures through the influence of soil moisture291

availability on evapotranspiration (Mueller and Seneviratne 2012), and can also be affected by292

land use change (Pielke Sr. et al. 2007; DeAngelis et al. 2010; Harding and Snyder 2012; Alter293

et al. 2015a,b; Mueller et al. 2016). The relationship between precipitation and evapotranspiration294

is modulated by the ability of vegetation to access stored soil moisture in the root zone, which295

generally acts to suppress the impacts of precipitation anomalies on evapotranspiration (Betts et al.296

2014). Average precipitation per day is calculated by season and year, and from these averages297

seasonal total precipitation is estimated for every year where at least 80% of daily observations are298

present. Trends are then calculated for seasonal total precipitation using simple linear regression299

for every station where at least 80% of the seasonal totals are present (Figure 2c).300

The land area most closely associated with each weather station is calculated using spherical301

Voronoi polygons (Renka 1997). For coastal stations that fall just outside of our coastal bound-302

aries, a minimum area of 1 hectare is associated with the station. Station area is used to calculate303

the widths of boxes in our boxplot figures, and to scale the dot sizes associated with weather station304

locations on figures showing temperature and precipitation trends.305
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g. Statistical analysis306

A bootstrap test is utilized to assess the significance of 95th percentile temperature trends for307

weather stations experiencing a given shift in precipitation or land use relative to stations experi-308

encing little change in that explanatory variable. Groupings of stations by land use and precipita-309

tion are shown in subsequent boxplots for each region. The test accounts for spatial autocorrela-310

tion by resampling all station observations identically, and accounts for temporal autocorrelation311

by resampling three-month seasonal blocks. For each bootstrap replicate (1000x), 95th percentile312

temperature trends are fit to the resampled data at each station using quantile regression. We then313

take the difference in the mean trend of stations experiencing a given shift in land use or precip-314

itation and the mean trend of stations experiencing no change in that explanatory variable. This315

procedure generates a distribution of mean differences that is compared with zero to determine316

a two-sided p-value. The test is similar to the approach taken in Mueller et al. (2016), although317

that analysis was with respect to whether temperature trends grouped by a given explanatory vari-318

able were significantly different than zero, whereas here we evaluate if temperature trends are319

significantly different from adjacent areas that have little change in the explanatory variable.320

h. Case study321

An example illustrating the temporal resolution of the land use and climate data employed in322

this study is presented in Figure 5 for Redwood County, Minnesota, USA. Maize and soybean are323

the dominant crops in the area, and both crops exhibit increasing yields since 1960 (Figure 5a,b).324

Increases in maize and soybean harvested area (Figure 5a) have been at the expense of other325

crops, with total cropland area remaining roughly constant (Figure 5e). Cropland area represents326

all land devoted to crops and therefore tends to be more stable than harvested areas of individual327

crops, which can be affected by changing market conditions and weather-induced crop failure328
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(for example, note the drop in maize harvested area during the flood of 1993). Area equipped for329

irrigation is negligible (Figure 5e). Summer precipitation shows substantial inter-annual variability330

and a modest long-term trend of 7 mm per decade (Figure 5e, regression line not shown).331

Yield and harvested area data are combined according to Eqs. 1, 2 to calculate NPPan (Fig-332

ure 5d), and linearly scaled into SCI using SIF-determined summer fraction of photosynthesis333

(VEGsf) according to Eqs. 3, 4. The approximately linear increase in SCI over time reflects in-334

creases in yield and greater land devoted to high-yielding maize and soybean crops (Figure 5c).335

Variations in crop types, crop productivity, planting schedules, or weather could all cause the336

summer fraction of SIF to vary with year. Although disaggregating the reasons for variations in337

satellite-based estimates of VEGsf is beyond the scope of this paper, it is possible to examine the338

summer fraction as a function of year back to 2007 using SIF and 1981 using NDVI. Both prod-339

ucts show interannual variability but neither exhibit strong trends. VEGsf calculated using SIF is340

systematically higher than when calculated using NDVI, an expected pattern since SIF tracks GPP341

more closely than NDVI (Guanter et al. 2014).342

The distribution of summer temperatures is indicated in Figure 5f, where the size of dots indi-343

cate the frequency of temperature observations during the summer months, binned to the nearest344

0.5◦C for legibility. Quantile regression of the 95th percentile temperature shows a decreasing345

temperature trend of -0.3◦C/decade. A block-bootstrap of the daily temperature data is used to346

assess significance of the temporal trend. For each bootstrap replicate, years are sampled with347

replacement, and all summer temperature observations are used for every year sampled. Quantile348

regression trends are fit to the sampled data for 1000 bootstrap replicates. The distribution of 95th
349

percentile temperature trends from the bootstrap demonstrates that this trend significantly differs350

from zero at 95% confidence (Figure 5g). Note that although this calculation of significance ap-351

plies to the temporal trend for this individual station, our calculation of significance related to land352
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use and precipitation trends depends upon relative temperature trends between weather stations353

grouped according to various explanatory variables.354

Four different predictor variables are considered candidates for explaining the observed trends355

in 95th percentile temperatures: total cropland area, area equipped for irrigation, precipitation,356

and SCI. We consider the explanatory power of each of these variables by examining the region-357

wide associations between temperature trends and trends in each predictor variable. In Redwood358

County, we see that each variable other than SCI displays minor trends since 1960. When examin-359

ing region-wide associations between the predictor variables and temperature trends, the Redwood360

County weather station would therefore be included in the control group of stations (see boxplots361

below) for both trends in cropland area and trends in area equipped for irrigation. For the pre-362

cipitation analysis, the station would be grouped with other stations with modest positive trends.363

SCI is the only predictor variable with a strong positive trend that co-occurs with the significant364

cooling in summer 95th percentile temperatures.365

3. Results and Discussion366

Trends in 95th percentile summer maximum temperatures are systematically cooler over in-367

tensified croplands relative to neighboring areas. This relationship holds in every region where368

summer cropping is the dominant land use, including for Central North America, Northern North369

America, Northern East Asia, Southern East Asia, and Southern South America. Median trends in370

95th percentile maximum temperatures are 0.2–0.4◦C per decade in intensifying areas compared371

to adjacent areas not experiencing intensification. No relationship is found in Western Europe372

and Southern Australia, areas where winter cropping dominates. Consistent with earlier work373

(Mueller et al. 2016), cooling is found in rainfed areas, such as the Canadian Prairies and much374

of the North American Corn Belt, as well as in irrigated areas. Substantial irrigation growth has375
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occurred in East Asia, helping facilitate increases in cropland productivity. Therefore, both irri-376

gated area trends and summer intensification trends are related to cooler temperature extremes in377

these areas. Changes in cropland area and precipitation are generally weak predictors of trends in378

extreme temperatures.379

In each region discussed below, the relationship between weather station 95th percentile tem-380

perature trends and local trends in our candidate predictor variables is described, discussed in the381

context of the literature, and presented visually using a series of boxplots. Candidate predictor382

variables are the local trends in cropland area, area equipped for irrigation, summer cropping in-383

tensity, and precipitation (from the same weather station). All trends in predictor variables are cal-384

culated using simple linear regression (Section 2b-d,f). In each plot, weather stations are evenly385

binned into subsets of stations according to local trends in the predictor variables. Subsetting386

allows us to examine how temperature trends vary with trends in the predictors in a way that is387

independent of functional form, and provides the basis for the aforementioned bootstrap test. Each388

box and whiskers displays the full range of 95th percentile temperature trends for a given subset389

of weather stations, with asterisks indicating the significance of the temperature trends.390

a. Central North America391

Cropland intensification is strongly associated with cooling in the Central North America region392

(Figure 6), which covers most of the continental United States and southeast Canada. These393

results are consistent with earlier results identifying an association between intensification and394

cooling from 1910–2014 using USDA crop survey data of twelve summer crop types (Mueller395

et al. 2016). Trends in 95th percentile temperatures (Figure 4) tend to show cooling or absence of396

warming over intensified cropland areas, while much of the rest of the region shows warming of397

around 0.1◦C per decade.398
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The dominant crops within the North American Corn Belt are maize (accounting for 25% of399

total area) and soybeans (24%) and their growth is centered on summer months (Figure 7). Average400

values of summer SIF across the world’s mid-latitudes are around 0.8 mW/m2/sr/nm, but in Central401

North America they peak in July at values exceeding 3 mW/m2/sr/nm, the largest values found402

for any spatially extensive region on the globe (Guanter et al. 2014; Mueller et al. 2016). The403

anomalously high productivity of the region is reflected values of SCI that are higher than any other404

major cropping area (Table 3). We infer that achieving these high rates of photosynthesis during405

the summer season has led to corresponding increases in evapotranspiration. This inference is406

supported by estimates of a positive evapotranspiration trend over the Mississippi basin (Milly and407

Dunne 2001) and is consistent with trends towards greater specific and relative humidity during408

summer in regions of intensified crop growth (Sandstrom et al. 2004; Brown and DeGaetano 2013).409

Further, we note that climate models from phase 5 of the Coupled Model Intercomparison Project410

(CMIP5) simulate temperature increases over the central US in response to historical forcings411

(Kumar et al. 2013), further emphasizing the importance of mechanisms not included in the models412

to explain historical temperature trends.413

Extreme temperatures since 1961 have cooled most strongly over the western Corn Belt, an414

area of substantial land use change and expanding commodity crop production (Lark et al. 2015).415

The stronger cooling over this area may arise from more influential land use transitions or from416

the gradual reduction in aerosol forcing over eastern North America. The cooling influence of417

aerosols on temperatures is thought to have peaked during the 1970s–1990s, therefore reductions418

in forcing would contribute to a warming trend that may counteract the influence from intensifi-419

cation (Leibensperger et al. 2012a,b). Since the climate of the western Corn Belt was never as420

strongly influenced by aerosols, this may explain the stronger cooling observed in this area.421
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Increasing area equipped for irrigation is found across the Great Plains and in rice-growing ar-422

eas adjacent to the Mississippi River. Those locations where area equipped for irrigation increased423

2.5–3.5% of grid cell area per decade show significant cooling of 95th percentile summer tem-424

peratures (p<0.05) relative to regions with near-constant irrigated area (Figure 6b), and become425

yet more significant for decadal trends greater than 3.5%. However, the amount of cooling area426

associated with increasing irrigation is only 14% of that associated with intensification, emphasiz-427

ing that increases in vegetation productivity influence evapotranspiration characteristics, whether428

in irrigated or rainfed areas. Area calculations are performed using Voronoi polygons associated429

with each weather station exhibiting negative 95th percentile temperature trends and associated430

with either at least 2.5% increases in irrigated area per decade (Figure 6b) or intensification trends431

of at least 0.5 g C m−2 summer−2 (Figure 6d).432

Trends in cropland area are inconsistently related to 95th percentile temperature trends (Fig-433

ure 6a). The appearance of significant cooling in relation to 2% per decade growth in cropland434

area may reflect greater evapotranspiration from cropland expansion, but also may result from the435

fact that we test candidate mechanisms in isolation. The presence of extreme temperature trends436

primarily driven by changes in irrigation and intensification makes it more likely that a random437

subsetting of the region can contain temperature trends that are larger than that of the control438

group. In future work, a multi-factor panel analysis would likely prove a better indicator of exact439

significance.440

Weather stations with decreased precipitation have slightly higher extreme temperature trends441

than other stations, which would be consistent with the effects of lower soil moisture, decreased442

evapotranspiration, and greater sensible heating from the land surface (Figure 6c). However, the443

warming relationship is not significant for all subsets of stations with decreasing precipitation, and444

stations with increasing precipitation do not exhibit significant cooling. In contrast, Mueller et al.445
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(2016) found a significant relationship between precipitation increases and cooler temperatures446

in the Midwest United States in their study of trends over the last century. They noted that such447

trends may be partly due to cropland intensification (Mueller et al. 2016) or irrigation growth448

across the Great Plains (DeAngelis et al. 2010; Harding and Snyder 2012; Alter et al. 2015a),449

since precipitation in the region is strongly influenced by rates of evapotranspiration (Betts 2004).450

The present analysis focused on trends since 1961 shows some areas of increasing precipitation in451

the region (Figure 2c), but no significant relationship between cooling and elevated precipitation.452

b. Northern North America453

Northern North America also shows cooling of 95th percentile temperatures associated with454

cropland intensification (Figure 8). Irrigation growth has been minimal and shows no strong re-455

lationship with the pattern of temperature trends. Crop phenology in the Canadian Prairies is456

strongly summer seasonal but with a shorter growing season than in the Corn Belt.457

Our findings align with earlier studies that identified a cooling of maximum temperatures and458

an increase in relative humidity during the period of peak crop growth in the Canadian Prairies459

(Gameda et al. 2007; Betts et al. 2013, 2016). This cooling was attributed to greater landscape460

evapotranspiration from declining cropland area left fallow during summer (Betts et al. 2013).461

Increased productivity on planted areas and declining summer fallow will both influence SCI re-462

spectively via changes to crop yields and harvested areas. The SCI trend in heavily cropped areas463

is 1.4 g C m−2 summer−2 (Figure 2a). To distinguish harvested area and yield contributions to this464

trend, we re-calculate SCI holding each fixed (Figure 9). SCI trends from harvested area variations465

alone give a trend of 0.5 g C m−2 summer−2. Conversely, SCI trends are 0.9 g C m−2 summer−2
466

when only yields are allowed to vary.467
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Insomuch as summer cooling is linearly proportional to SCI trends, which is far from clear468

but appears the simplest assumption, increasing productivity on planted areas (determined from469

the yield trends) is the dominant influence on cooling. However, we note that we find greater470

increases in SCI from changing harvested area in Alberta and Manitoba than in Saskatchewan,471

despite inventory data showing the greatest declines in fallow for Saskatchewan (Betts et al. 2013).472

This discrepancy may result from expansion of harvested area unrelated to declining summer473

fallow, crop types not included in our analysis, or local-scale changes that we do not resolve in474

our historical crop data. We are particularly limited in resolving spatial patterns of change for475

barley and rapeseed, since our area and yield time series are generated by perturbing circa 2000476

maps with national-level data. A more complete analysis of influences on temperature would477

be possible by utilizing higher-resolution data on agricultural practices and by running regional478

climate simulations with fallow and productivity scenarios.479

Gameda et al. (2007) and Betts et al. (2013) found increases in precipitation associated with480

elevated evapotranspiration during peak crop growth, indicating greater precipitation recycling and481

increased potential for deep convection triggered by land management shifts (Raddatz 1998). We482

also find positive precipitation trends over the Canadian Prairies (Figure 2c), lending support to this483

notion. However, the associations between 95th percentile temperature trends and precipitation484

trends over the whole Northern North America region are more ambiguous. Areas with greater485

precipitation do not systematically show significantly cooler temperatures. However, most stations486

experiencing drying trends do have significantly elevated warming trends relative to the control487

group, consistent with decreases in evapotranspiration and increases in sensible heating. Greater488

temperature sensitivity to decreases in precipitation than to increases in precipitation is consistent489

with the results of Betts et al. (2017) for the Canadian Prairies, where it was demonstrated that490
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the diurnal temperature range in the region exhibits greater coupling with precipitation anomalies491

during dry conditions than during wet conditions.492

c. Western Europe493

Intensification is not associated with cooling in Western Europe (Figure 10). The 95th per-494

centile temperature trends since 1961 show strong warming averaging 0.4◦C per decade, and have495

insignificant relationships with cropland area, irrigation, and SCI trends. Temperature trends ap-496

pear to decline with increasing precipitation trends, but this relationship is insignificant and weak497

compared to the predictor relationships found elsewhere.498

These negative findings appear to result from the dominance of winter cropping and the hetero-499

geneity of the landscape. SIF peaks during May when the growing season for barley, rapeseed,500

and winter wheat varieties all coincide. Of the crops examined, only maize has a long summer501

season where peak transpiration and peak temperatures would align. Grain maize only covers 3%502

of the landscape within the heavily cropped areas of Southern England and Northwest France.503

Silage maize for fodder is not included in our dataset, but judging from disaggregated maize area504

for France, including both would still only double this percentage (FAO 2016). For comparison,505

summer maize and soybean account for 49% of the total land area in the Central North American506

Corn Belt (Figure 6).507

Moderate SIF values persist throughout the summer and give higher VEGsf values in Western508

Europe compared with more homogenous winter cropping areas such as Kansas and Southwest509

Australia (Figure 3b, Table 3). The resolution of the SIF input to VEGsf makes it difficult to510

separate this heterogeneous landscape into cropland and natural vegetation, leading to VEGsf511

values that are likely higher than would be observed on croplands alone.512
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The general warming in Western Europe is therefore consistent with our hypothesis that inten-513

sification of summer crop production is associated with cooling. Given the low extent of summer514

cropping, the large majority of croplands are mature or harvested by late summer. The dominance515

of winter cropping systems affords the possibility of mitigating extremely hot temperatures by516

transitioning to no-till systems, which have increased summer surface albedo relative to tilled soil517

(Davin et al. 2014).518

d. Northern East Asia519

Intensification of summer crops coincides with suppressed extreme temperature trends in the520

Northern East Asia region, which encompasses northern China, Mongolia, Hokkaido (Japan), and521

eastern Russia, with a southern boundary of 40◦N, or roughly the latitude of Beijing. The major522

cropping area within this region is Northeast China, where summer cropping of maize, soybeans,523

and rice dominate the landscape. Warming of 95th percentile temperatures at rates of around524

0.2◦C per decade is found in most of the region (Figure 4), with the exception of an arc of near525

zero warming extending north to south across Northeast China exhibiting strong trends in SCI and526

area equipped for irrigation (Figure 11). The spatial patterns of the SCI trend and the irrigation527

trend are highly correlated, due to the heavy reliance upon irrigation to facilitate increases in528

crop productivity and paddy rice production. Areas of Northeast China, where intensification and529

irrigation trends are strong, exhibit both increasing and decreasing area devoted to cropland. If we530

consider intensification and irrigation the primary drivers of cooling, this spatial overlap explains531

the counter-intuitive finding that both increasing and decreasing cropland area trends are associated532

with cooler extreme temperature trends. Precipitation trends exhibit no consistent association with533

extreme temperature trends.534
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Our results are consistent with several recent studies suggesting land use has cooled summer535

temperatures in Northeast China. Hu et al. (2010) compare surface temperature observations to536

reanalysis products that do not include land use forcing – the “observation minus reanalysis”537

methodology – in order to estimate the influence of land use change. Similar to our results, they538

find cooling in maximum temperatures in Northeast China relative to reanalysis. Cao et al. (2015)539

force a regional climate model with remotely sensed changes in biophysical land surface param-540

eters, including increases in leaf area index and vegetated fraction, and find cooling in cropped541

areas between 2001–2010. Zhao et al. (2016) find cooling and wetting trends from 1960–2014542

associated with cultivated land fraction, with May–September daily maximum temperature trends543

in heavily cultivated areas 0.10◦C per decade cooler than areas with minimal cropland.544

A major uncertainty is the climatic influence of aerosol emissions and tropospheric ozone across545

Asia (Liao et al. 2015). While black carbon emissions and tropospheric ozone lead to warming,546

other pollutants are expected to have a cooling effect on surface temperatures. One set of model547

simulations (Chang et al. 2009) indicates that, on net, these forcings have minimal influence on548

summer temperatures but cause cooling during the winter months. However, Du et al. (2017) use549

an observationally-based attribution methodology to suggest suppression of average warm season550

air temperature trends in Northeast China due to declines in surface solar radiation. Detailed mod-551

eling studies are needed to understand the relative contributions of land use change, air pollution,552

and greenhouse gases on temperature trends.553

e. Southern East Asia554

Cropland intensification is associated with cooling in the Southern East Asia region, which in-555

cludes areas of China, the Korean peninsula, and Japan south of 40◦N to the Tropic of Cancer.556

Warming in 95th percentile temperatures of around 0.2◦C is seen over most of the region, with557
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the exception of cooling over the major cropping area of the North China Plain and an absence558

of major warming extending south from this region through central China (Figure 4). The pattern559

of changes in temperature reflects that of SCI (Figure 12). Areas of negative SCI trends in South560

Korea and Japan are associated with the greatest rates of warming, whereas intensified landscapes561

in the North China Plain exhibit the most cooling. Similar to Northern East Asia, cropland inten-562

sification across much of this region is accompanied and supported by increases in irrigation, such563

that trends in the area equipped for irrigation are also significantly associated with reductions in564

95th percentile temperatures. Area equipped for irrigation is higher in the North China Plain than565

any other major cropping area examined (Table 3).566

Our results for Southern East Asia are consistent with the land use influence identified in the567

analysis of observations and reanalysis by Hu et al. (2010) and the regional modeling of Cao568

et al. (2015). Bonfils and Lobell (2007) has also identified cooling of irrigated areas relative to569

surrounding unirrigated land in this region. Given that much of the heavily cultivated areas have570

experienced declines in cropland area while increasing productivity, decreases in cropland area are571

associated with reductions in extreme temperature trends. Precipitation trends appear unrelated to572

temperature trends. Aerosol emissions and tropospheric ozone are likely also important in this573

region. Although one modeling study indicates minimal net influence of pollutants on summer574

temperatures (Chang et al. 2009), other research points to a suppression of warm season air tem-575

perature trends in the North China Plain of over 0.1◦C due to changes in surface solar radiation576

(Du et al. 2017). Since changes in evapotranspiration from land can also influence cloudiness,577

modeling studies exploring the interactions between pollution and land use change are necessary.578

The major cropping area in this region is the North China Plain, an area where much of the579

land is double-cropped with winter wheat (Figure 12e,f). The intercropping period is centered on580

June according to the SIF data, and a large peak in photosynthetic activity occurs during July and581
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August corresponding to growth of the second crop. These findings suggest that elevated evapo-582

transpiration rates associated with intensification of the second crop are sufficient to contribute to583

a cooling of 95th percentile temperatures over the three-month summer season. Jeong et al. (2014)584

note that temperatures during the intercropping period in double-cropped areas are higher than in585

areas planted with a single crop due to lower rates of evapotranspiration.586

f. Southern Australia587

In extratropical Australia, no substantial correlation exists between any of our explanatory vari-588

ables and patterns of warming (Figure 13). The null result for intensification is to be expected589

given that winter wheat is dominant for the intensified production area in Western Australia. Win-590

ter seasonality is clearly demonstrated in the annual cycle of SIF and in the planting and harvest591

data. As a result, no significant variation exists in SCI. It is possible we would find associations be-592

tween extreme temperatures and intensification if we extended our analysis to the winter growing593

season, as previous work focused on the wheat lands of Western Australia found elevated latent594

heat fluxes during the winter growing season over cropped areas relative to neighboring natural595

vegetation (Ray et al. 2003).596

g. Southern South America597

Data availability is limited in Southern South America (Figure 14), however several stations598

overlap with intensified cropland area in the Argentine Pampas west of Buenos Aires (Figure 3).599

Consistent with expectations, those stations that have positive SCI trends all exhibit 95th percentile600

temperature trends that are negative or indistinguishable from zero, while the average 95th per-601

centile temperature trend across all other areas is towards warming. Strong relationships are not602

observed between 95th percentile temperature trends and other predictors. Precipitation records603
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in this region have a high number of missing observations, limiting our ability to analyze associa-604

tions between temperature and precipitation trends. Our results are consistent with those of Nuñez605

et al. (2008), who find cooling of maximum temperatures and diurnal temperature range over the606

Pampas using an observation minus reanalysis approach. These authors also analyze precipitation607

trends using a more complete network of stations, finding elevated precipitation co-occurring with608

areas of cooling. Crop phenology in the Argentine Pampas is a mix of winter wheat and sum-609

mer crops. Soybeans are the most dominant crop, and the area planted to soybeans has expanded610

substantially in recent years (Nuñez et al. 2008).611

h. Vegetation seasonality from NDVI data612

Global patterns of vegetation seasonality remain similar when calculating VEGsf using the613

GIMMS NDVI data instead of GOME-2 SIF data for the years 2007–2012; however, the mag-614

nitudes of NDVI-based VEGsf tend to be slightly lower (Figure 15a) than the SIF-based values615

since reflectance-based indices do not track the seasonality of vegetation growth as tightly as SIF616

(Guanter et al. 2014). Consistent associations are seen between SCI, calculated using NDVI-based617

VEGsf (SCI–NDVI), and summer temperature trends (Figure 16).618

Trends in VEGsf using NDVI over 1982–2013 (Figure 15b) show weak, but positive, trends619

over the Western Corn Belt, the Canadian Prairies, and the Argentine Pampas. Positive trends pre-620

sumably reflect cropland intensification, soybean expansion in Argentina, and declining summer621

fallow in Canada. Negative trends in the North China Plain could be the result of increased double-622

cropping (Ray and Foley 2013; Gray et al. 2014a; Jeong et al. 2014). If SCI could be calculated623

with yearly-varying VEGsf over the full record, the VEGsf trend analysis suggests that the mag-624

nitudes of SCI would be slightly higher in many cropped regions, with the exception of the North625

China Plain. However, the spatial patterns of intensified (high SCI trend) versus non-intensified626
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(zero or low SCI trend) areas would likely be minimally affected, suggesting little bearing on our627

conclusions.628

4. Conclusions629

A significant relationship between intensification and cooler temperature extremes is found630

across all regions with substantial trends towards intensified summer cropping. Intensification631

is consistently the strongest land use predictor of extreme temperature trends, and is associated632

with cooling in both rainfed and irrigated cropping systems. In portions of Central North America633

and East Asia, growth in area equipped for irrigation is also closely related to cooling. Median634

95th percentile temperature trends in intensified areas are systematically 0.2–0.4◦C per decade635

lower than in neighboring areas not experiencing intensification. Cooling associated with both636

intensification and increased irrigation can be understood as a consequence of increased latent637

cooling associated with elevated rates of evapotranspiration. Regional cooling can thus be added638

to the list of impacts associated with cropland intensification, alongside land demand (Matson and639

Vitousek 2006; Burney et al. 2010), nutrient application (Vitousek et al. 2009), the seasonality640

of atmospheric carbon dioxide (Gray et al. 2014b), water use (Siebert and Döll 2010), and water641

quality (Diaz and Rosenberg 2008).642

Because extreme high temperatures are associated with crop damages, their amelioration by643

enhanced evapotranspiration raises the interesting question of how much of the agricultural inten-644

sification that we estimate, which is largely driven by improvement in yield, can be characterized645

as a positive feedback. There are, however, a number of extenuating circumstances regarding646

the operation of such a feedback. Cooling from evapotranspiration in rainfed areas is lost during647

drought conditions, leading to greater temperature shocks when soil moisture is depleted (Mueller648

et al. 2016). Increased soil water consumption could also increase crop exposure to dry spells,649
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unless water is recycled through increased rainfall. Further, although extreme temperatures may650

be reduced over the summer months, temperature trends during key early-season reproductive pe-651

riods are often towards warming (Gourdji et al. 2013). Higher atmospheric CO2 concentrations652

increase plant water use efficiency (Leakey et al. 2009), a change that may offset some of the653

otherwise expected increases in evapotranspiration. Also of note is that increased humidity levels654

may lead to little net change in heat index extremes for local human populations despite cooler air655

temperatures (Lobell et al. 2008).656

Suppression of extreme temperatures by high-intensity croplands can be considered a climate657

regulation service (West et al. 2010), but the total climatic influence of any ecosystem is a function658

of both biophysical and biogeochemical climate forcings. On an annual basis, the modeling and659

accounting performed by Anderson-Teixeira et al. (2012) indicate US croplands and grasslands660

have similar climate regulation values, driven by high rates of evapotranspiration in cropland and661

high carbon storage in grasslands.662

Further analyses are needed to understand the contribution of intensification–driven amelioration663

of temperature extremes on historical and future crop productivity. Crop yield models typically664

treat temperatures as an exogenous driver of productivity, although crop development and produc-665

tivity play an important role in modifying surface energy fluxes (Williams and Torn 2015) and666

temperature extremes (Mueller et al. 2016). Moreover, the cooling effect of evapotranspiration667

on crop canopy temperature is much larger than the cooling effect on air temperature measured668

at standard weather stations (Siebert et al. 2014), and only recently has systematic modeling of669

canopy temperature been introduced into crop models to better reflect the impact of transpiration–670

driven cooling on crop heat stress (Webber et al. 2017). The degree to which management practices671

alter local weather and climate may have first-order implications for future yield trends.672
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TABLE 1. Historical and modern harvest index (HI) values by crop. All modern HI values are drawn from the

compilation by Monfreda et al. (2008), and references for the historical values are listed in the table.

943

944

crop type historical HI reference modern HI

barley 0.38 Riggs et al. (1981) 0.49

maize – – 0.45

rapeseed – – 0.30

rice 0.30 Hay (1995) 0.40

soybean – – 0.42

wheat 0.33 Hay (1995) 0.39
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TABLE 2. The percent of summer station–days reporting maximum temperature observations across all

weather stations, listed by region and time period. Summer is defined as June–August in the Northern Hemi-

sphere and December–February in the Southern Hemisphere.

945

946

947

time period

region 1961–1969 1970–1979 1980–1989 1990–2014

Central North America 95.6 96.4 93.6 83.7

Northern North America 90.8 97.0 95.3 70.8

Western Europe 98.0 98.9 98.6 82.6

Northern East Asia 98.1 98.0 99.1 92.6

Southern East Asia 99.5 100.0 100.0 89.9

Southern Australia 95.3 95.8 95.8 76.3

Southern South America 95.8 98.8 95.4 66.0
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TABLE 3. Average cropland area, area equipped for irrigation (AEI), vegetation summer fraction (VEGsf)

calculated from chlorophyll fluorescence data, summer cropping intensity index (SCI), and summer precipitation

for major cropping areas. The major cropping areas are defined by the green grid cells in Figure 1. Each average

is calculated over the full temporal range of the data, from 1961–2007 for cropland area, 1961-2005 for AEI,

1961–2008 for SCI, 1961–2014 for precipitation. VEGsf is calculated over the recent years of 2007–2012. No

precipitation data is shown for the Argentine Pampas due to data limitations.

948

949

950

951

952

953

major crop production area

(and corresponding region)

cropland area

(% grid cell)

AEI

(% grid cell)
VEGsf

SCI

(g C m−2 summer−1)

summer

precipitation (mm)

North American Corn Belt

(in Central North America)

72 3 0.67 168 289

Canadian Prairies

(in Northern North America)

70 1 0.81 83 203

SE England and NW France

(in Western Europe)

63 3 0.36 88 149

Northeast China

(in Northern East Asia)

68 6 0.79 102 345

North China Plain

(in Southern East Asia)

66 31 0.43 100 444

SW Australia

(in Southern Australia)

60 0 0.03 2 41

Argentine Pampas

(in Southern South America)

65 0 0.5 53 –
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Fig. 6. Trends in Central North American temperature extremes grouped according to candidate1000

predictor variables: (a) cropland area, (b) area equipped for irrigation, (c) summer precip-1001

itation, and (d) SCI. Data points are from weather stations that have been associated with1002

local (nearest half-degree grid box) trends in land use characteristics. Weather stations are1003

evenly binned according to land use or precipitation trends. Boxplots display the full range1004

of temperature trends across stations for each bin, with the boxes containing the interquartile1005

range, whiskers extending up to 1.5x the interquartile range, and crosses indicating outliers1006

beyond this range. Asterisks indicate that 95th percentile temperature trends for a given bin1007

significantly differ from those in the control group (gray box, centered on zero trend) at the1008

p< 0.05 level or p<0.01 for double asterisks. X-axis values are generally the mid-points1009

of each bin, although edge bins include weather stations associated with outlier trends in1010

each explanatory variable. Box widths are proportional to the area associated with the con-1011

stituent weather stations, except for the control bins that are narrowed by a factor of five for1012

legibility. Box colors are consistent with the maps in Figures 2 and 3. . . . . . . . . 561013

Fig. 7. Seasonal patterns of vegetative development for the major crop production areas of the Cen-1014

tral North American Corn Belt. (a) Median monthly SIF and the interquartile range of1015

monthly values calculated across available years. (b) Average crop seasons – from planting1016

to harvest – for major crops in the region from data compiled by Sacks et al. (2010). Ranges1017

of typical planting and harvest dates are indicated with the dashed black lines. Harvested1018

area of major crops (Monfreda et al. 2008) in each region are indicated next to crop names,1019

and are used to scale the width of the boxes devoted to each crop. Given that two seasons1020

of wheat are present, bar area is divided equally between the two categories since crop har-1021

vested area data are not separated by season. Both SIF and crop season data are weighted1022

spatial averages across those grid cells indicated for the Central North America region in1023

Figure 1, where weights are cropland area from Ramankutty et al. (2008) for the SIF plot1024

and individual crop harvested areas from Monfreda et al. (2008) for the crop season plot. . . 571025

Fig. 8. Same as in Figures 6 and 7, but for Northern North America. One outlier station where the1026

95th percentile summer temperature trend was >2◦C per decade has been removed from1027

the boxplots and statistical analysis. Phenology is shown in (e) and (f) for the major crop1028

production areas of the Canadian Prairies. . . . . . . . . . . . . . . . 581029

Fig. 9. Disaggregating contributions to SCI trends in the Canadian Prairies. (a) Trends in SCI1030

calculated using yearly varying harvested area and average crop yields over the years 1961–1031

2008. (b) Trends in SCI calculated using yearly varying yields and average harvested area.1032

Note that the scale is truncated relative to Figure 3 to better highlight differences between1033

the calculations. . . . . . . . . . . . . . . . . . . . . . . 591034

Fig. 10. Same as in Figures 6 and 7, but for Western Europe. Phenology is shown in (e) and (f) for1035

the major crop production areas of Southern England and Northwest France. . . . . . . 601036

Fig. 11. Same as in Figures 6 and 7, but for Northern East Asia. Phenology is shown in (e) and (f)1037

for the major crop production areas of Northeast China. . . . . . . . . . . . 611038

Fig. 12. Same as in Figures 6 and 7, but for Southern East Asia. Phenology is shown in (e) and (f)1039

for the major crop production areas of the North China Plain. . . . . . . . . . . 621040

Fig. 13. Same as in Figures 6 and 7, but for Southern Australia. Phenology is shown in (e) and (f)1041

for the major crop production areas of Western Australia. . . . . . . . . . . . 631042
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Fig. 14. Same as in Figures 6 and 7, but for Southern South America. Phenology is shown in (d) and1043

(e) for the major crop production areas of the Argentine Pampas. . . . . . . . . . 641044

Fig. 15. (a) VEGsf calculated using the GIMMS NDVI data over the years 2007–2012, consistent1045

with the calculation for SIF. (b) The decadal trend in VEGsf calculated using GIMMS NDVI1046

data over the years 1982–2013. Areas where VEGsf was not calculated using the SIF data1047

are masked. . . . . . . . . . . . . . . . . . . . . . . . 651048

Fig. 16. (a) The summer cropping intensity index calculated using GIMMS NDVI data instead of1049

SIF to calculate the vegetation summer fraction (SCI-NDVI). Associations between SCI–1050

NDVI and 95th percentile summer temperature trends for (b) Central North America, (c)1051

Northern North America, (d) Northern East Asia, (e) Southern East Asia, (f) and Southern1052

South America. . . . . . . . . . . . . . . . . . . . . . . 661053
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FIG. 1. Regions examined for associations between agricultural land use, precipitation, and extreme tempera-

tures are shown in orange boxes and include Central North America, Northern North America, Western Europe,

Northern East Asia, Southern East Asia, Southern Australia, and Southern South America. Within each region,

a major cropping area is identified (in green), and these areas are used to characterize patterns of crop phenology

within each region. Major cropping areas are defined as areas where the trend in our Summer Cropping Intensity

index, ”SCI” (defined in the section Summer cropping intensity trends), is > 1 g C m−2 summer−2, cropland

area > 50% grid cell area, and grid cell centers are within the bounds identified by the dashed lines.
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FIG. 2. (a) Trends in cropland area for 1961–2007, (b) trends in area equipped for irrigation for 1961–2005,

and (c) trends in summer precipitation for 1961–2014. Cropland area is from a historical dataset based on

satellite and agricultural census data (Ramankutty and Foley 1999). Area equipped for irrigation is determined

from agricultural census and land use records as recorded by Siebert et al. (2015). Precipitation data is from

the Global Historical Climatology Network – Daily weather station dataset, and dot sizes are scaled according

to Voronoi polygons surrounding each station. Summer seasons are defined as June–August in the Northern

Hemisphere and December–February in the Southern Hemisphere.
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FIG. 3. (a) Trends in area-normalized net primary productivity (NPPan) over 1961–2014, calculated using

harvested area and yield records for six major crops: maize, wheat, rice, soybean, barley, and rapeseed. (b)

The fraction of vegetation growth occurring during the summer, the vegetation summer fraction (VEGsf), cal-

culated using sun-induced chlorophyll fluorescence (SIF) from the GOME-2 satellite. (c) Trends in the Summer

Cropping Intensity index (SCI), calculated by multiplying NPPan trends and VEGsf.
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FIG. 4. Quantile regression trends in 95th percentile summer daily maximum temperatures from 1961–2014.

Temperature data is from the Global Historical Climatology Network – Daily weather station dataset, and dot

sizes are scaled according to Voronoi polygons surrounding each station. Summer seasons are defined as June–

August in the Northern Hemisphere and December–February in the Southern Hemisphere.
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FIG. 5. An example showing local crop and land use characteristics, weather data, and 95th percentile maxi-

mum temperature trends for a weather station in Redwood County, MN, USA. (a) Crop harvested areas and (b)

crop yields for all crops (of the six considered) where the maximum harvested area was greater than 1% of grid

cell area. (c) The fraction of vegetation growth occurring during the summer (VEGsf), as calculated using SIF

and NDVI. (d) NPPan and SCI, calculated using crop harvested area, crop yield, and SIF-based VEGsf according

to Equations 1-4. (e) Cropland area, area equipped for irrigation, and summer (June–August) precipitation are

also considered as predictors of changing extreme temperatures. (f) Daily summer maximum temperature ob-

servations, with the 95th percentile quantile regression trend overlaid in maroon. The quantile regression trend

is calculated after adding jitter to the observations to account for rounding artifacts. (g) A histogram of 95th

percentile maximum temperature trends derived from a block-bootstrap resampling of yearly observations. The

trend line fit using all the data is shown in the thick maroon line, and dashed lines indicate the 95% confidence

interval on the trend. All land use data are extracted for the nearest grid cell to the weather station, and gridded

data are used at the original resolution of each dataset (5 arc-minute for the crop harvested area and yield data,

5 arc-minute for the irrigation data, and half-degree for the cropland area data).
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FIG. 6. Trends in Central North American temperature extremes grouped according to candidate predictor

variables: (a) cropland area, (b) area equipped for irrigation, (c) summer precipitation, and (d) SCI. Data points

are from weather stations that have been associated with local (nearest half-degree grid box) trends in land use

characteristics. Weather stations are evenly binned according to land use or precipitation trends. Boxplots dis-

play the full range of temperature trends across stations for each bin, with the boxes containing the interquartile

range, whiskers extending up to 1.5x the interquartile range, and crosses indicating outliers beyond this range.

Asterisks indicate that 95th percentile temperature trends for a given bin significantly differ from those in the

control group (gray box, centered on zero trend) at the p< 0.05 level or p<0.01 for double asterisks. X-axis

values are generally the mid-points of each bin, although edge bins include weather stations associated with out-

lier trends in each explanatory variable. Box widths are proportional to the area associated with the constituent

weather stations, except for the control bins that are narrowed by a factor of five for legibility. Box colors are

consistent with the maps in Figures 2 and 3.
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FIG. 7. Seasonal patterns of vegetative development for the major crop production areas of the Central North

American Corn Belt. (a) Median monthly SIF and the interquartile range of monthly values calculated across

available years. (b) Average crop seasons – from planting to harvest – for major crops in the region from data

compiled by Sacks et al. (2010). Ranges of typical planting and harvest dates are indicated with the dashed black

lines. Harvested area of major crops (Monfreda et al. 2008) in each region are indicated next to crop names, and

are used to scale the width of the boxes devoted to each crop. Given that two seasons of wheat are present, bar

area is divided equally between the two categories since crop harvested area data are not separated by season.

Both SIF and crop season data are weighted spatial averages across those grid cells indicated for the Central

North America region in Figure 1, where weights are cropland area from Ramankutty et al. (2008) for the SIF

plot and individual crop harvested areas from Monfreda et al. (2008) for the crop season plot.
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FIG. 8. Same as in Figures 6 and 7, but for Northern North America. One outlier station where the 95th

percentile summer temperature trend was >2◦C per decade has been removed from the boxplots and statistical

analysis. Phenology is shown in (e) and (f) for the major crop production areas of the Canadian Prairies.
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FIG. 9. Disaggregating contributions to SCI trends in the Canadian Prairies. (a) Trends in SCI calculated using

yearly varying harvested area and average crop yields over the years 1961–2008. (b) Trends in SCI calculated

using yearly varying yields and average harvested area. Note that the scale is truncated relative to Figure 3 to

better highlight differences between the calculations.
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FIG. 10. Same as in Figures 6 and 7, but for Western Europe. Phenology is shown in (e) and (f) for the major

crop production areas of Southern England and Northwest France.

1120

1121

61



−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
SCI trend (g C m−2 summer−2)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) * * **

(d)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−20 −10 0 10 20
summer precipitation trend (mm decade−1)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 )

(c)

J F M A M J J A S O N D

0

1

2

3

4

month

SI
F 

(m
W

/m
2 /s

r/n
m

)

 

 (e)
monthly median
interquartile range

J F M A M J J A S O N D

soybeans (6%)

rice (4%)

maize (21%)

month

(f)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4
cropland area trend (% grid cell decade−1)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) * *

(a)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
AEI trend (% grid cell decade−1)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) * * * *

(b)

FIG. 11. Same as in Figures 6 and 7, but for Northern East Asia. Phenology is shown in (e) and (f) for the

major crop production areas of Northeast China.
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FIG. 12. Same as in Figures 6 and 7, but for Southern East Asia. Phenology is shown in (e) and (f) for the

major crop production areas of the North China Plain.
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FIG. 13. Same as in Figures 6 and 7, but for Southern Australia. Phenology is shown in (e) and (f) for the

major crop production areas of Western Australia.

1126

1127

64



−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0 1
SCI trend (g C m−2 summer−2)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) **

(c)

J F M A M J J A S O N D

0

1

2

3

4

month

SI
F 

(m
W

/m
2 /s

r/n
m

)

 

 (d)
monthly median
interquartile range

J F M A M J J A S O N D

winter wheat (14%)

sunflower (5%)

soybeans (25%)

maize (7%)

month

(e)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

−2 0 2
cropland area trend (% grid cell decade−1)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 )

(a)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0 1
AEI trend (% grid cell decade−1)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) *

(b)

FIG. 14. Same as in Figures 6 and 7, but for Southern South America. Phenology is shown in (d) and (e) for

the major crop production areas of the Argentine Pampas.
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FIG. 15. (a) VEGsf calculated using the GIMMS NDVI data over the years 2007–2012, consistent with

the calculation for SIF. (b) The decadal trend in VEGsf calculated using GIMMS NDVI data over the years

1982–2013. Areas where VEGsf was not calculated using the SIF data are masked.

1130

1131

1132

66



−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0 1
SCI−NDVI trend (g C m−2 summer−2)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) **

(f)

−0.4

−0.2

0

0.2

0.4

0.6

−1 0 1 2 3
SCI−NDVI trend (g C m−2 summer−2)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) ** ** **

(e)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4
SCI−NDVI trend (g C m−2 summer−2)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) * ** *

(d)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 1 2
SCI−NDVI trend (g C m−2 summer−2)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) * *

(c)

SCI−NDVI trend (g C m−2 summer−2)
−2 0 2 4 6 8

(a)

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5
SCI−NDVI trend (g C m−2 summer−2)

Tx
95

 tr
en

d 
(°

C
 d

ec
ad

e−
1 ) * * ** ** **

(b)

FIG. 16. (a) The summer cropping intensity index calculated using GIMMS NDVI data instead of SIF to

calculate the vegetation summer fraction (SCI-NDVI). Associations between SCI–NDVI and 95th percentile

summer temperature trends for (b) Central North America, (c) Northern North America, (d) Northern East Asia,

(e) Southern East Asia, (f) and Southern South America.
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