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Abstract Tide-gauge data are one of the longest instrumental records of the ocean, but these data can
be noisy, gappy, and biased. Previous studies have used empirical Bayes methods to infer the sea-level field
from tide-gauge records but have not accounted for uncertainty in the estimation of model parameters.
Here we compare to a fully Bayesian method that accounts for uncertainty in model parameters, and dem-
onstrate that empirical Bayes methods underestimate the uncertainty in sea level inferred from tide-gauge
records. We use a synthetic tide-gauge data set to assess the skill of the empirical and full Bayes methods.
The empirical-Bayes credible intervals on the sea-level field are narrower and less reliable than the full-
Bayes credible intervals: the empirical-Bayes 95% credible intervals are 42.8% narrower on average than are
the full-Bayes 95% credible intervals; full-Bayes 95% credible intervals capture 95.6% of the true field values,
while the empirical-Bayes 95% credible intervals capture only 77.1% of the true values, showing that param-
eter uncertainty has an important influence on the uncertainty of the inferred sea-level field. Most influen-
tial are uncertainties in model parameters for data biases (i.e., tide-gauge datums); letting data-bias
parameters vary along with the sea-level process, but holding all other parameters fixed, the 95% credible
intervals capture 92.8% of the true synthetic-field values. Results indicate that full Bayes methods are prefer-
able for reconstructing sea-level estimates in cases where complete and accurate estimates of uncertainty
are warranted.

1. Introduction

Tide-gauge sea-level data represent one of the longest instrumental records of the ocean, in some locations
dating to the eighteenth century [e.g., Ekman, 1988; Woodworth, 1999; Bogdanov et al., 2000; Woodworth
et al,, 2010]. Tide-gauge data are informative for ocean circulation and climate studies but pose unique chal-
lenges from the perspective of data analysis. Affixed to land, tide gauges provide point-referenced data,
and thus records are influenced by crustal motion and local hydrodynamics that can obscure regional or
global ocean behavior. The records are also sparsely distributed along the coast and can feature intermit-
tently missing values, giving an incomplete picture of the evolution of the sea-level field in space and time.

Synthesizing tide-gauge data within a coherent statistical framework has proven useful for reconstructing
historical sea-level changes [e.g., Hay et al., 2015]. But, correcting for, and representing the uncertainties in,
the multiple potential sources of variability in the data not directly linked to ocean-volume changes (e.g.,
datum changes, land subsidence, and postglacial rebound) remains challenging. Some authors have used
probabilistic Bayesian methods to infer sea level from tide gauges, casting sea level as a field with spatio-
temporal covariance and interpreting the data as noisy, gappy, biased versions of the sea-level field [e.g.,
Hay et al., 2013; Kopp, 2013; Kopp et al., 2014; Hay et al., 2015; Kopp et al., 2016]. These methods are typically
empirically Bayesian, in the sense that the model parameters (e.g., describing the scales of spatiotemporal
covariance) are regarded as known quantities, and assigned point values [e.g., Carlin and Louis, 2000; Cressie
and Wikle, 2011]. However, in reality, estimates of model parameters feature uncertainties that may not be
negligible. In contrast, fully Bayesian approaches treat model parameters as unknowns, wherein they are
assigned prior distributions, and solved for along with the process or field of interest [e.g., Gelman et al.,
2004; Cressie and Wikle, 2011]. Fully Bayesian models have been applied to various data-assimilation and
inverse-modeling problems in ocean science, such as inferring surface winds over the Mediterranean Sea
and equatorial Pacific [Wikle et al., 2001; Milliff et al., 2011; Pinardi et al., 2011], describing the hydrography
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of the South Atlantic Ocean [McKeague et al., 2005; Herbei et al., 2008], predicting sea-surface temperatures
over the tropical Pacific [Berliner et al., 2000], and interpreting ocean-color retrievals [Harmon and Challenor,
19971. See Wikle et al. [2013] for a more comprehensive review.

The relative merits of empirical and full Bayes approaches have been generally discussed in textbooks [e.g.,
Cressie and Wikle, 2011], as well as more particularly in applied studies, for example, in disease mapping
[e.g., Bernardinelli and Montomoli, 1992; Heisterkamp et al., 1993; Louis and Shen, 1999; Leyland and Davis,
2005; Ashby, 2006] and traffic safety [e.g., Miaou and Lord, 2003; Carriquiry and Pawlovich, 2005; Huang et al.,
2009; Lan et al., 2009; Persaud et al., 2010]. These works demonstrate that empirical Bayes methods tend to
overestimate the precision (i.e., underestimate the uncertainty) on the process or field of interest, producing
credible intervals that are too narrow, due to their neglect of uncertainty in the parameters. These studies
reveal that fully Bayesian frameworks, which account for more sources of uncertainty, provide more repre-
sentative credible intervals.

Dedicated comparisons between empirical and full Bayes approaches do not appear in the sea-level litera-
ture. Although previous results [e.g., Cressie and Wikle, 2011] lead to the general expectation that empirical
Bayes methods will underestimate uncertainty and that full Bayes approaches will give more reliable credi-
ble intervals, the precise degree to which empirically Bayesian methods underestimate the uncertainties on
the sea-level field determined from tide-gauge records is unclear, as is where exactly differences would
arise in the context of a fully Bayesian framework. Given the use of both empirical and full Bayesian meth-
ods in the literature, it appears useful to make an explicit comparison of these approaches. To this end, we
develop a fully Bayesian hierarchical model to infer the sea-level field from tide-gauge data and compare its
output to a reduced version that is equivalent to an empirical Bayes approach.

Hierarchical models [Gelman et al., 2004; Wikle and Berliner, 2007; Cressie and Wikle, 2011; Tingley et al., 2012]
are based on the notion of conditional probabilities: data are regarded as conditional upon a latent (hidden)
spatiotemporal process, whose evolution is determined by various parameters, the exact numerical values
of which are unknown. This conditionality is inverted using Bayes’ theorem, yielding the posterior distribu-
tion of the process and the parameters given the observations. Solutions are generated using Markov chain
Monte Carlo methods and constitute an ensemble of estimates of the process and the parameters—a set of
possible histories, each consistent with and equally likely given the observations.

Here we assess the merits of the full Bayes approach in the context of tide-gauge records, comparing to an
empirical Bayes method. We consider annual tide-gauge data along the North American northeast coast,
applying our algorithm in its full hierarchical mode, iteratively solving for the process and parameters, and
in a reduced empirical mode, solving only for the sea-level process based on assigned point values for mod-
el parameters. Based on a known but corrupted synthetic field, we test the ability of the two methods to
infer the true process—with appropriate uncertainties—from noisy, gappy, biased data. The remainder of
the paper is structured as follows: in section 2, we describe the data; in section 3, we develop the Bayesian
algorithm; in section 4, we compare full and empirical Bayes implementations; in section 5, we discuss our
findings. More technical and diagnostic aspects of the algorithm and its solution are presented in Support-
ing Information.

2. Tide-Gauge Data

We use 36 tide-gauge records on the North American northeast coast (Table 1 and Figure 1). The annual
data were extracted from the Permanent Service for Mean Sea Level (PSMSL) Revised Local Reference (RLR)
database [Holgate et al., 2013; Permanent Service for Mean Sea Level (PSMSL), 2016] on 14 March 2016. Each
individual data record has more than 25 years of annual values. Together they comprise 2437 gauge-years
of observations over 1893-2015. As necessary context for the development of our hierarchical algorithm,
we briefly explore the characteristics of sea-level changes and tide-gauge records along the coast.

2.1. Space and Time Scales of Sea-Level Changes

Sea-level changes along the northeast coast can show nonrandom structure in space and time. Spatial gra-
dients in temporal trends from long (centennial) tide-gauge records in this area have been interpreted in
terms of vertical crustal motions due to postglacial rebound [e.g., Davis and Mitrovica, 1996; Miller and Doug-
las, 2006; Kopp, 2013] as well as groundwater withdrawal [Miller et al., 2013; Karegar et al., 2016]. Using
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Table 1. Annual RLR PSMSL [Holgate et al., 2013] Tide-Gauge Sea-Level Time Series Used in This Study®

Station Name Longitude Latitude Timespan (Completeness) Datum
Duck Pier outside —75.7467 36.1833 1985-2015 (90%) 1985
Portsmouth (Norfolk Navy Yard) —76.2933 36.8217 1936-1986 (100%) 1973
Sewells Point, Hampton Roads —76.33 36.9467 1928-2015 (100%) 1964
Chesapeak Bay Br. Tun. —76.1133 36.9667 1985-2015 (100%) 1986
Kiptopeke Beach —75.9883 37.165 1952-2015 (97%) 1973
Gloucester Point —76.5 37.2467 1951-2002 (88%) 1967
Solomon'’s Island (Biol. Lab.) —76.4517 38.3167 1938-2012 (95%) 1965
Cambridge Il —76.0683 38.5733 1971-2015 (96%) 1974
Lewes (Breakwater Harbor) —75.12 38.7817 1919-2015 (71%) 1971
Washington DC —77.0217 38.8733 1931-2015 (98%) 1971
Cape May —74.96 38.9683 1966-2015 (90%) 1966
Annapolis (Naval Academy) —76.48 38.9833 1929-2015 (94%) 1974
Baltimore —76.5783 39.2667 1903-2015 (99%) 1964
Atlantic City —74.4183 39.355 1912-2015 (88%) 1964
Philadelphia (Pier 9N) —75.1417 39.9333 1901-2015 (96%) 1971
Sandy Hook —74.0083 40.4667 1933-2015 (95%) 1964
New York (The Battery) —74.0133 40.7 1856-2015 (89%) 1964
Willets Point —73.7817 40.7933 1932-1999 (96%) 1964
Port Jefferson —73.0767 40.95 1958-1990 (94%) 1973
Montauk —71.96 41.0483 1948-2015 (84%) 1964
Bridgeport —73.1817 41.1733 1965-2014 (92%) 1972
Nantucket Island —70.0967 41.285 1965-2015 (92%) 1973
New London —72.09 41.36 1939-2015 (94%) 1964
Newport —71.3267 41.505 1931-2015 (98%) 1964
Woods Hole (Ocean. Inst.) —70.6717 415233 1933-2015 (90%) 1972
Providence (State Pier) —714 41.8067 1939-2015 (83%) 1974
Boston —71.0533 423533 1921-2015 (98%) 1964
Seavey Island —70.7417 43.08 1927-1985 (85%) 1972
Portland (Maine) —70.2467 43.6567 1912-2015 (99%) 1964
Yarmouth —66.1333 43.8333 1967-2014 (73%) 1986
Bar Harbor, Frenchman Bay —68.205 443917 1948-2015 (85%) 1964
Halifax —63.5833 44.6667 1896-2012 (74%) 1988
Eastport —66.9817 44.9033 1930-2015 (87%) 1964
Saint John, N.B. —66.0667 45.2667 1897-2014 (63%) 1991
North Sydney —60.25 46.2167 1970-2014 (91%) 1991
Charlottetown —63.1167 46.2333 1912-2014 (68%) 1992

“The completeness is percentage of timespan for which valid annual data are available. RLR datum is the year to which the respective
tide-gauge record is referenced to [PSMSL, 2016].

climate models, Yin and Goddard [2013] have argued that variable ocean dynamics might also have played
a role. Some conclude that trends are higher over the mid-Atlantic states and lower along coastal New
England [Kopp, 2013], whereas others have reasoned that distribution of the tide-gauge sea-level trends
shows no clear spatial structure [Andres et al., 2013].

Over shorter (interannual and decadal) time scales, coherent fluctuations in sea level are apparent along
the coast, such that tide-gauge records between Cape Hatteras and Cape Breton are tightly correlated with
one another [Thompson and Mitchum, 2014; Woodworth et al., 2014; Piecuch and Ponte, 2015; Piecuch et al.,
2016]. The spatial coherence partly reflects longshore-wind-stress and atmospheric-pressure forcing [Pie-
cuch and Ponte, 2015; Piecuch et al., 2016].

Spectral analyses of global sea-level time series show that sophisticated stochastic models (e.g., autoregres-
sive fractionally integrated moving average, generalized Gauss Markov) are often needed to characterize
the temporal structure of weekly or monthly data records [Hughes and Williams, 2010; Bos et al., 2014]. How-
ever, for the case of annual tide-gauge time series, simpler first-order autoregressive models are usually suf-
ficient to describe the spectral nature of the sea-level records [Bos et al., 2014].

2.2. Biases and Errors in Tide-Gauge Records

The imperfections inherent to tide-gauge data must also be considered in model design. Mean sea-level
records are made relative to nearby benchmarks, rather than with respect to some universal reference
datum [Higginson et al., 2015]. Time series from the PSMSL RLR database are usually offset by values about
7 m below local mean sea level over some year during the data record—a convention adopted in the 1960s
to avoid storing negative values in the computers of that time [Intergovernmental Oceanographic
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a. SPatlal COverage Commission (IOC) of UNESCO, 2006)]. It is
100 often desirable to remove the time mean val-
ues and express tide-gauge data as anoma-

T
2
,./’& %0 lies relative to some common reference

- 4 80 interval [Church et al.,, 2004]. But, due to the
- nonuniform space-time coverage of the data
- 70 (Figure 1), this can be a difficult task that

cannot be accomplished simply by subtract-
60 ing a value of 7 m from the various records
50 [cf. Tingley, 2012].
R o The tide-gauge data are also subject to
70 W 60 W errors. Even though the accuracy of an indi-

b. Temporal Coverage vidual tide-gauge reading can be as good as
' ' ' ' ' order 1 cm, the accuracy of monthly or annu-
al mean sea-level data—averaged over
many individual readings—is at best order
1 mm, due to possible systematic errors
[Pugh and Woodworth, 2014]. Tide-gauge
records can also be affected by “representa-
tion” error—Ilocal behavior at a location that
is uncorrelated with the behavior at other

0 . . . . . locations [cf. Ponte et al, 20071, which can
1900 1920 1940 1960 1980 2000 result from, for example, local river runoff,
Years harbor effects, or trapped circulations.
Figure 1. (a) Locations of 36 annual tide-gauge records from the PSMSL .
RLR database on the North American northeast coast (Table 1). Sizes of 3. Model Formulation
the dots correspond to the timespan of the records (larger dots denote .
longer records). Colors of the dots represent the completeness of the Our model comprises three levels: a process
records (cf. Table 1). (b) Number of tide gauges reporting valid annual val- level, wherein the mathematical rules that

ues against time. govern the evolution of the latent process

are given; a data or observation level, wherein
a measurement model is specified; and a prior level, wherein model parameters are assigned prior distribu-
tions [e.g., Gelman et al., 2004; Cressie and Wikle, 2011].

3.1. Process Level

Consider sea level at time step k € {1,...,K} and target location n € {1,...,N}. The evolution of the latent
spatiotemporal process, y, = [yuﬂ e 7yN,k} , is represented as a field of temporal trends superimposed on a
first-order autoregressive [AR(1)] process,

y,—bti=r(y,_,—btx—1)+ex. )]

Here b is the spatial vector of temporal trends, t, is the time at k, r is the AR(1) coefficient, and e is the
zero-mean temporal white noise vector of spatially correlated innovations, ex ~ A/ (O, X), such that Oy is a
NX1 column vector of zeros, the symbol ~ is read “is distributed as,” and N (u,v) is a multivariate-normal
distribution with mean u and covariance v. Note that our use of a common value for r, which may seem
overly simplistic, is justified given the data, as demonstrated by residual analyses presented in Supporting
Information S1.3. Note also that we have centered the set of times {t;} on zero (i.e., Y_k_, t,=0) so that
the mean of the process (1) vanishes. The innovation vectors are temporally independent, identically dis-
tributed (IID) random variables, with exponential spatial covariance,

Zij:azexp (—olxi—xj]). ()

In (2), 62 is the sill (the limit of the semivariogram of the process [Banerjee et al.,, 2004]), ¢ is the inverse
range, and |x;—x;| is the distance separating sites i and j. Note that the trend vector b is cast as a normal
field, b ~ N (uly, 7ly), with mean p and variance 72, such that 1y is a NX1 column vector of ones and ly
is the N X N identity matrix. Unlike the innovation sequences e, the elements of the trend field b are
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Table 2. Descriptions of the Model Process and Parameter Terms, Including the Functional Forms of the Priors and the Conditional Pos-
terior Distributions®

Parameter Prior Distribution Conditional Posterior Description

Yo MV normal MV normal Initial process values

Yi.x MV normal Process values

b MV normal Spatial field of process linear trend

u Normal Normal Mean value of process linear trend

n? Inverse-gamma Inverse-gamma Spatial variance of the process linear trend
r Uniform Truncated normal AR(1) coefficient of the process

a? Inverse-gamma Inverse-gamma Sill of the process innovations

@ Lognormal Nonstandard Inverse range of the process innovations
5 Inverse-gamma Inverse-gamma Instrumental error variance

14 MV normal Spatial field of observational biases

v Normal Normal Mean value of observational biases

72 Inverse-gamma Inverse-gamma Spatial variance in observational biases

2See Supporting Information Text S4 and S5 for more details on the priors and conditional posterior distributions. MV stands for mul-
tivariate normal and nonstandard indicates a conditional posterior distribution that is not a standard probability distribution [Gelman
et al.,, 2004].

assumed to be spatially independent—a decision justified and discussed in more detail in Supporting Infor-
mation S1.2.

3.2. Data Level
Given sea-level data from tide gauges at My <N sites at time step k, we regard the data,
zy= [zu(, . ,sz,k]T, as noisy, biased, and gappy versions of the process,

zy=Hyy,+di+Fl. 3)

Here Hy is a M XN selection matrix (populated with zeros and ones) that isolates the process at the mea-
surement sites at time step k, d is a vector of temporally IID, spatially uncorrelated normal measurement
errors, dy ~ /\/(OMk, (SZIMk), ¢ is a vector of temporally IID, spatially independent data biases,
£~ Ny, %ly), and Fy is a M XM selection matrix that picks out the observation biases at the various
data sites. The data bias / is identifiable because we have designed the process (1) to have zero mean (see
Supporting Information S3). Here Iy, and Iy denote the M XM, and M X M identity matrices, respectively,
where M is the total number of locations (M, < MVk). Given the sampling distribution (3), the data errors
dy include both instrumental and representational errors.

3.3. Prior Level

To close the model, priors must be given to the model parameters and unobserved initial conditions. Our
approach is to use appropriate, diffuse, weakly informative, and (mainly) conjugate forms [Tingley and Huyb-
ers, 2010]. Table 2 lists the prior distributions and Supporting Information S4 explains our rationale for
choosing those forms.

3.4. Drawing Samples From the Posterior Distribution

We use Bayes’ rule to express the posterior distribution of the process and parameters conditioned on the
data in terms of the likelihood of the data given the process and the parameters and the priors of the
parameters,

p(y,®|z) < p(z|ly,®) - p(y, ®),
=p(zly, ©,) - p(y|®,) - p(©;) - p(©y),

K
=p(©,) - p(©y) - p(yo) - [ [ IP(2lyk: ©:) - P(yilyi—1,©y)]-
P

2
Here ®z:'{‘3 L, TZ} is the set of data parameters. We assume the breakdown,
p(©:)=p(3°) - p({lv,7*) - p(v) - (). (5)

. . . 2 2 .
Similarly, @y:{r, %, 9,6, 1,7} s the set of process parameters, where we assume,
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p(©y)=p(r) - p(a®) - p(e) - p(blu, ) - p() - p(n*). 6)
Above, p is probability density, | is conditionality, o is proportionality, and @:’{an ®Z}.

Markov chain Monte Carlo (MCMC) methods are used to evaluate conditional posterior distributions of the
process and parameters. We use Gibbs sampling to draw values of the process and parameters with conju-
gate priors and a Metropolis step to draw values of the inverse range parameter (¢). See Gelman et al.
[2004, chap. 11] for more discussion of these approaches. The full conditional posterior distributions are giv-
en in Supporting Information S5. We perform 200,000 MCMC iterations. Initial process values are set to zero,
and initial parameter values are randomly drawn from the priors. The first 100,000 warm-up draws are dis-
carded to eliminate influences from initialization transients. Further, to reduce the influence of serial correla-
tion, sequences are thinned, with only 1 out of every 100 samples kept. The convergence of the chains is
monitored by generating multiple sequences starting from dispersed initial conditions: after performing the
above procedure three times (giving three separate 1000 draw sequences for each estimand), we compare
the variances between and within the sequences using the convergence monitor factor (R) from Gelman
et al. [2004].

Our primary purpose is to compare empirical and full Bayes methods for inferring the sea-level field from
tide-gauge data. For the interested reader, a more complete presentation and evaluation of the fully Bayes-
ian solution is given in Supporting Information S1 and S2.

3.5. Sources of Variance in the Posterior Field Estimates

Variance in the posterior estimates of the sea-level field y, derives from multiple sources. The noise vectors
e and dy in the process and data equations both contribute to posterior variance in the sea-level field esti-
mates (equations (55)-(58)). We refer to this stochastic source of variance in the posterior field as residual
variability after Kennedy and O’Hagan [2001]. This definition of residual variability incorporates observational
error represented by dy. Were model parameters known and fixed, residual variability would be the only
source of variance in the posterior field solutions. Yet model parameters are unknown and variable, thus
introducing another source of variance into the posterior field estimates, which we will call parameter uncer-
tainty. Note that this partitioning of the variance in the posterior distributions does not amount to a com-
prehensive quantification of the uncertainty in the model estimate, since we do not consider structural
uncertainties with respect to the data.

As described below, residual variability and parameter uncertainty can be evaluated by running the Bayes-
ian model in its full hierarchical mode (wherein parameters are variable and both residual variability and
parameter uncertainty contribute to posterior variance in the sea-level field) as well as in reduced empirical
mode (wherein the parameters are set to constants and only residual variability contributes to the posterior
field variance), and examining differences between the posterior solutions. Residual variability and parame-
ter uncertainty may not be linear and separable and could involve nonlinear interactions, but differences
between the full and empirical solutions nevertheless give a sense of the influence of parameter
uncertainty.

In the results that follow, we show that, in the absence of data, the variance in the posterior field estimates
is mainly controlled by residual variability, whereas it is mostly governed by parameter uncertainty in the
presence of observations. Also, we reveal that to generate reliable posterior solutions of the sea-level field
(with meaningful error estimates), it is essential to account for uncertainty in the data-bias parameters
{6,v,7%}.

3.6. Implementing the Algorithm in Reduced Empirical Mode

In addition to running our model in full hierarchical mode, iteratively solving for process and parameters,
we also consider a “reduced” empirical mode, using fixed parameter values and solving only for the process.
For the reduced mode, we set model parameters equal to their most likely values based on the posterior
distributions determined from the former fully Bayesian case (see Supporting Information S1 and S2). Our
choice to define model parameters in terms of their posterior modes is similar to Kopp [2013], who uses
maximum likelihood estimation for the model parameters. Although we could have used any number of
other strategies for setting the parameters (e.g., selecting the parameter vector sample that minimizes the
Mahalanobis distance to the mean vector), the salient point here is not so much how we fix the parameters,
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= o1l ‘ [-75.12,38.7817] _ | but rather that we fix them at
[3 z \ 7 . .
= A all. Through choosing sensible
S values for the parameters, we
(7]
T are able to evaluate how uncer-
£ tainty in model parameters
= affects uncertainty in the poste-
,'§a rior sea-level field estimates.
T
E 4. Comparison Between
£ Empirical and Full
o Bayesian Methodologies
£ Since the empirical Bayes meth-
E od neglects parameter uncer-
% 01 c 0 o { tainty, the resulting credible
-0. d. CHARLOTTETOWN . -
T L. HARL ‘ ‘ ‘ : : : ‘ intervals are anticipated to be
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 . .
Time (yr) too narrow [Cressie and Wikle,
2011]. To examine the extent of
Figure 2. Detrended sea-level time series from example tide-gauge locations (indicated by underestimation, we compare
black circles in Figure 3a). The raw tide-gauge records (offset by the median bias estimate empirical and  full Bayes

and with the median trend estimate removed; Figures S1 and S2) are shown in red dash

dot. The blue solid lines and light blue shading are the median estimates and 95% credible
intervals of the sea-level process, respectively, from the fully Bayesian hierarchical model. el from tide—gauge data. Figure
The thicker and thinner yellow lines are the median estimates and 95% credible intervals 2 shows the estimated sea-level
of the sea-level process, respectively, from the reduced empirically Bayesian algorithm. . Lo
Gray vertical lines at 1910 and 2010 in Figures 2b and 2d indicate the locations and times process, with uncertainties,
of the histograms shown in Figure 4. from the Bayesian models at

several example locations. The
corresponding tide-gauge records at those locations are also shown for comparison. (For a better visualiza-
tion of the uncertainties, linear trends have been removed from the time series.) When the data are avail-
able, they are generally in excellent agreement with the posterior solutions, signifying that the model
regards the data as good estimates of the process. When the data are unavailable, the credible intervals
grow, because the algorithm must use information from adjacent points in space and time to impute values
into the record. The uncertainties are generally larger earlier in time, consistent with there being fewer
observations earlier on in the record. For example, full Bayes 95% credible interval widths are about 80 mm
in 1910 and 51 mm in 2010 on average (Figure 3). However, the uncertainties do not always decrease
monotonically as time increases, on account of intermittently missing data values. For instance, 95% credi-
ble intervals grow larger at Charlottetown, Prince Edward Island, during 1975-1979 when there is a gap in
that record (Figure 2d).

approaches to inferring sea lev-

Median process solutions produced by the full and empirical Bayes models are essentially identical. Correla-
tions between the median full and empirical process estimates are very high (>0.99 with or without trends
removed), and regression coefficients between full and empirical medians are consistent with a value of
unity (i.e., between 0.98 and 1.03). The credible intervals produced by the two methods show analogous
qualitative behavior. Errors are larger earlier on in time, or in the absence of data, whereas errors are smaller
later in time and in the presence of data. But, they are distinct quantitatively in that the credible intervals
from the empirical Bayes approach are smaller than from the full Bayesian methodology. The uncertainty
estimates from both methods tend to be larger in absolute terms earlier on in time, but, due partly to
increasing data scarcity, discrepancies between credible intervals from the two approaches become rela-
tively more marked later in the instrumental record. Such differences can be gleaned from the time series in
Figure 2, but are more apparent in Figure 4, where we show example histograms of the full and empirical
Bayesian estimates for detrended sea level at two tide-gauge sites (New York and Charlottetown) and two
points in time (1910 and 2010). At New York in 1910 and 2010 and Charlottetown in 2010, the empirical
Bayes histograms are much narrower and more strongly peaked than the full Bayes histograms, whereas at
Charlottetown in 1910, both empirical and full Bayes histograms are comparably wide and diffuse. In the
former instances, the tide-gauges feature observations, while in the latter instance there is a data gap (cf.
Figure 2). Across all locations, the 95% credible intervals on the process from the empirical Bayes solution,
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Figure 3. Widths of the 95% credible interval on the process from the full
Bayesian model in (a) 1910 and (b) 2010. Black circles in Figure 3a indicate
the four example tide-gauge locations shown in Figure 2.

a. NEW YORK 1910

which assumes parameters are known and
uses fixed values for them, are about 23 and
56% narrower on average in 1910 and 2010,
respectively, than from the full Bayes solu-
tion, which regards parameters as unknown
and iteratively solves for them (Figure 5).
More generally, when data are available,
parameter uncertainty (captured only by the
full Bayes approach) is comparatively more
important than residual variability, while
when data are not available, residual variabil-
ity (captured by both full and empirical
Bayes approaches) is relatively more impor-
tant (cf. section 3.5).

Both models represent the same process
and involve the same data, and so dif-
ferences between their credible intervals
(Figures 2, 4 and 5) must imply that one or
both are unreliable in the sense that the
credible interval corresponding to probabili-
ty P does not contain the same fraction P of
true values, being thus under or overdisper-
sive [Raftery et al., 2005]. Given results in oth-
er fields [Bernardinelli and Montomoli, 1992;
Miaou and Lord, 2003], we anticipate that the
empirical Bayes algorithm is underdispersive,
yielding too narrow credible intervals
(though the full Bayes model could also give
unreliable credible intervals if the model is

b. NEW YORK 2010
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Figure 4. Histograms of estimated detrended sea level from the full (blue) and empirical Bayes model (yellow) for New York (top) and
Charlottetown (bottom) in 1910 (left) and 2010 (right; cf. gray vertical lines in Figures 2b and 2d). Blue and yellow dots along the horizontal
axis represent the bounds of the 95% credible intervals from the full and empirical Bayes models, respectively. Observations are available

at the location and time in Figures 4a, 4b, and 4d, but not available in Figure 4c.
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Figure 5. Widths of the 95% credible interval on the process from the
empirical Bayes model divided by the corresponding widths of the 95%
credible interval on the process from the full Bayes model (i.e., the values

shown in Figure 3) in (a) 1910 and (b) 2010.

misspecified relative to the observations).
We now turn to a numerical experiment to
evaluate the reliability of the two
approaches. As previously, we apply the
model in its full hierarchical Bayesian and
reduced empirical Bayesian implementa-
tions. The difference is that now we apply
the model to corrupted data of a known syn-
thetic process. Using parameter solutions
from the full Bayes solution applied to tide
gauges (Tables ST and S2 and Figures S1 and
S2), we use the process field equation (1) to
create a synthetic process at the tide-gauge
sites. The perfectly known synthetic fields
are then corrupted by imposing noise and
bias according to the measurement model
(3), with gaps imparted as with the data
(Figure 1). (See Supporting Information S2
for a more detailed description of the gener-
ation of the synthetic data set) We then
apply the Bayesian algorithms to the syn-
thetic data set. Because the true process field
values are known, we can evaluate the skill
of the algorithms for determining the true
field values from corrupted observations.

We show time series of model solutions and
corrupted observations from the synthetic
data analysis at a few example sites in Figure
6. Also shown are time series of the true val-
ues. The median model solutions closely fol-

low the corrupted data and the true process. The empirical-Bayes credible intervals are narrower than the full-
Bayes credible intervals, especially when observations are available. To illustrate differences in credible inter-
vals in more detail, we show histograms of full and empirical-Bayes model solutions at a couple locations and

time points, now alongside the

true process values (Figure 7). In
the selected examples, the
known synthetic value is con-
tained within the 95% credible

interval from the full Bayes mod-

Height (m) Height (m)

el, but is not captured by the
95% credible interval from the
empirical Bayes model; in other

Height (m)

words, the true values clearly fall
outside the 95% credible interval
from the empirical solution
much more than 5% of the time.

Height (m)

For a more systematic evalua-
tion, we use tools from the
weather-forecasting  literature

[Hersbach, 2000; Hamill, 2001;

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Time (yr)

Gel et al., 2004; Li et al., 2010],
namely the rank histogram, cov-

Figure 6. As in Figure 2 but for the synthetic data analysis. Black lines are the true values. erage rate, and continuous
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Figure 7. As in Figure 4 but for the synthetic data analysis. White dots are the true values.

ranked probability score. Given an ensemble of estimates of some field, along with the true field value (a
“verifying analysis”), the rank histogram reveals whether the true value can plausibly be interpreted as a
member of the estimated ensemble. It is evaluated by pooling the true and estimated values at a point,
sorting the pooled values, ranking the true value, and averaging over many instances. If the true and esti-
mated values can be described by the same probability distribution, and have the same statistical proper-
ties, then the true value is equally likely to have any rank, and so a necessary condition for reliable
estimates is a uniform rank histogram. If the posterior distribution is insufficiently variable (e.g., if extreme
values are observed more than expected based on the estimated ensemble), the rank histogram is concave
(“U-shaped”), whereas a more bell-shaped histogram results if there is excess variability. Rank histograms
are shown in Figure 8a. For the full Bayes solution, the rank histogram is more or less flat, but does show
hints of overpopulation in the middle ranks, suggesting that credible intervals from the full Bayes algorithm
are reliable but perhaps conservative. For the empirical Bayes solution, the rank histogram is clearly con-
cave, signifying a lack of variability in the posterior estimates compared to the true field values.

The coverage rate of the credible intervals is the fraction of true values that fall within a given quantile, and
equals that quantile when coverage is perfect. If coverage is greater than the target quantile, then the esti-
mated credible intervals are too wide, and vice versa if the coverage is less than the target quantile. Cover-
age rates are shown in Figure 8b. The credible intervals from the full Bayes model are broadly reliable, but

a. Rank Histograms b. Coverage Rates
0.2 ‘ 100
3
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= ® ’
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>
3
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Figure 8. (a) Rank histograms and (b) coverage rates for the full (blue) and empirical (yellow) solutions. Black dashes in panel (b) mark the
1:1 line; if the coverage rates are perfect, the colored dots will fall along the black dashes.
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with an excess of about 3% of true values captured by the posterior credible intervals. In contrast, the credi-
ble intervals from the empirical Bayes model are too narrow, with roughly 14% too few true values falling
within the posterior credible intervals.

We also consider the continuous ranked probability score (CRPS), which measures both the accuracy and
precision of an ensemble prediction [Hersbach, 2000]. The CRPS is a generalization of the Brier score and is
based on the mean square difference between the cumulative probability distributions of the ensemble
prediction and the true value. Like the Brier score, the CRPS is a proper scoring rule [Gneiting and Raftery,
2007]. The CRPS can be decomposed into a reliability component (Reli), which measures the average fre-
guency with which the true value falls below some given percentile from the ensemble prediction, and a
potential term (CRPS,q:) that relates to the spread of the ensemble. We assess CRPS, Reli, and CRPSp; values
by comparing the model ensemble of posterior estimates to the true sea-level value for each individual
tide-gauge location and year, and then averaging over all locations and years.

The full Bayes CRPS (8.33 mm) is smaller than the empirical Bayes CRPS (8.75 mm), showing that the former
is a better estimator (as measured by the CRPS). The full Bayes solution is also more reliable than the empiri-
cal Bayes solution; Reli for the full solution (0.02 mm) is lower than for the empirical solution (0.43 mm), con-
sistent with the rank histograms and coverage rates (Figure 8), suggesting that the full-Bayes credible
intervals are more representative than the empirical-Bayes credible intervals. The full and empirical CRPSpqt
values are nearly identical (8.31 and 8.32 mm, respectively), and close to the full Bayes CRPS. The nearly
identical full and empirical CRPSy: values could relate to the fact that the models have identical (and, by
design, perfect) structure.

To interpret the differences in process credible intervals between the full and empirical Bayes algorithms,
we run an additional suite of “intermediate” synthetic data experiments. Some model parameters are now
given constant values (as in the empirical Bayes method), while others are assigned weak prior constraints
(as in the full Bayes approach). In one subgroup of these experiments, most parameters are variable, except
for one parameter (or a small subset of parameters) that is held fixed. In the other experimental subgroup,
most parameters are set to constants, but one parameter (or small subset of parameters) is allowed to vary.

Some results from the intermediate experiments are given in Table 3. If the data-bias parameters {¢,v, 7%}
are fixed, while all other parameters are variable, the coverage rates and widths of the 95% process credible
intervals are close to the empirical Bayes case. For all other cases of fixing one parameter (or a small subset
of parameters), and allowing the remaining parameters to vary, the coverage rates and widths of the credi-
ble intervals are similar to the full Bayes case. Likewise, if data-bias parameters are variable, credible interval
widths and coverage rates are close to the full Bayes case. For all other instances of letting one parameter
(or a small subset) vary, results are close to the empirical Bayes case. Thus, given our model design, in order

Table 3. Example Results From the Full, Empirical, and Intermediate Bayes Experiments®

Experiment Parameter(s) Coverage Rate NY1910 NY2010 CT1910 CT2010
Full 95.6 46.2 43.6 86.7 48.3
Empirical 771 233 18.7 754 244
SGl (fixed) {b, u, 7%} 927 408 3838 826 429
{¢,v,7%} 78.0 229 19.1 77.0 245
@ 95.7 440 41.7 86.0 48.1
5 95.5 414 39.8 85.1 41.2
a2 95.1 41.8 393 859 43.8
r 94.8 393 36.7 825 437
SGll (variable) {b, u, 7} 78.1 22.7 18.8 77.7 233
{,v,72} 9238 40.1 3838 84.2 443
[ 76.9 229 18.7 77.0 245
? 77.0 23.1 185 78.0 24.0
a2 76.5 22.6 18.7 77.0 244
r 76.6 234 18.6 75.0 246

SGl refers to the intermediate model experiments where the parameters indicated in the second column are held fixed (all other
parameters are allowed to vary). SGIl denotes the intermediate experiments where the parameters in the second column are allowed to
vary (all other parameters are held fixed). Coverage rates in the third column are the percentages of true process values captured by
the 95% credible intervals, across all locations and times, for the various Bayesian model solutions. The fourth through seventh columns
show the widths (in mm) of the 95% credible intervals for the process at New York (NY) and Charlottetown (CT) in 1910 and 2010.
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to achieve reliable credible intervals on the sea-level process, uncertainty in the data-bias parameters needs
to be taken into account.

These results demonstrate that the fully Bayesian solution is close to optimally reliable. They also suggest
that the empirical approach could potentially perform as well as the fully Bayesian approach after some
postprocessing, such as removing the time mean over some standard reference interval or datum epoch.
Motivated by this suggestion, and the recommendation of a reviewer, we reconsider the full and empirical
Bayes solutions after removing their respective time means over the 1983-2001 National Tidal Datum
Epoch (NTDE) employed by the National Ocean Service. Parallel versions of Figures 2-8, based on solutions
adjusted to NTDE, are shown in Figures S6-512.

Removing temporal means over the NTDE impacts the widths of the credible intervals from both the full
and empirical Bayes solutions. For the full Bayes, the widths of the 95% credible intervals are reduced con-
siderably for recent periods (by more than 50% in some cases), but modestly increased for the earliest peri-
ods (at most by 5%; Figure 9a). Impacts are also apparent for empirical Bayes, but are less immediately
striking; widths of 95% credible intervals decrease slightly for years within the NTDE and increase modestly
for periods outside the NTDE (magnitudes of change at most 8%; Figure 9b). Discrepancies between widths
of the full and empirical Bayes 95% credible intervals are thus considerably reduced for the most recent
years (e.g., reduced by at least one half for years after 1918), but are comparatively less affected for the earli-
est times (Figure 9¢).

The skill of the solutions is also influenced by removing mean values over the NTDE. For the empirical Bayes
solution, leveling to the NTDE results in flatter rank histograms (Figure S12), a better CRPS (Table 4), and
much more accurate coverage for recent years (Figure 9d). However, although performance is generally
improved, removing time means from the solutions over the NTDE does not lead to universally better
results. For example, both full and empirical-Bayes credible intervals become less reliable during the early
years: before leveling to the NTDE, full and empirical Bayes 95% credible intervals capture 91 and 77% of
true process values, respectively, across all tide gauges over the 19 year period 1901-1919; these respective
coverages drop to 84 and 71% after referencing to the NTDE (Figure 9d).

5. Discussion
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Figure 9. (a) Percent change in mean 95% process credible interval width over all 36 tide empirical-Bayes credible inter-
gauges for full Bayes going from the 1893-2015 model default reference interval (MDRI) to vals are more pronounced

the 1983-2001 NTDE. (Negative values mean that NTDE gives narrower credible intervals . .
than MDRL.) (b) As in Figure 9a but for empirical Bayes. (c) Ratio of average empirical-to-full when data were available (Flg_
Bayes 95% process credible interval width across gauges for each year referencing to ures 4 and 7). Rank histograms,
MDRI or NTDE. Light gray shading in Figures 9a-9c is the NTDE. (d) Coverage of the 95% coverage rates, and continuous
credible intervals, averaged over all sites and moving 19 year windows, of the full and . .
empirical Bayes solutions referenced either to the 1893-2015 MDRI and 1983-2001 NTDE. ranked probablllty scores in the
Horizontal dashed dot gray line marks the target coverage. context of the synthetic data
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analysis show that the full Bayes

Table 4. CRPS, Reli, and CRPS,,.;, Computed Over All Locations and Times, for the . .
approach is more reliable than the

Full and Empirical Bayes Solutions Referenced to the Model Default Reference Inter-

val 1893-2015 and the National Tidal Datum Epoch 1983-2001 (NTDE)® empirical Bayes method (Figure 8),
Implementation Reference Interval CRPS Reli CRPSpot highlighting the impact of para-
Full 1893-2015 832 0.02 831 meter uncertainty, namely uncer-
Bl fifel 189352015 875 0= 832 tainties in data-bias parameters
Full 1983-2001 7.75 0.04 7.71
Empirical 1983-2001 8.12 0.24 7.87 (Table 3).

°All values have units of mm. We also employed a synthetic data

technique to assess the origins of

differences between the full and
empirical Bayes approaches. The full and empirical Bayes approaches provide nearly identical median pro-
cess estimates, but with the full Bayes giving wider credible intervals. A simple analogy is illustrative for
describing the origins of this result. Given an observation z drawn from a normal distribution
zlm,s% ~ N'(m,s?), consider the following two cases. In the first case, the mean m is known, say
m ~ §(m—p), where 6(-) is the Dirac delta, and so the marginal distribution is z|s> ~ A (u, s2). In the second
case, m is unknown, given the prior m ~ N (y, %), and so the marginal distribution is z|s* ~ N (y, s> +12).
The mean, as well as the median, of p(z|s?) is identical in both cases, but the variance is larger in the second
case. The first case is likened to the empirical Bayes method, where model parameters are fixed constants,
whereas the second is likened to the full Bayes approach, where the parameters are given prior
distributions.

Using synthetic data analysis, we have shown that (given a perfect model) setting parameters equal to their
most likely values is adequate for achieving a best estimate of the process, and the empirical Bayes method
probably suffices in such a case. For inference on second or higher moments of the process, the empirical
Bayes approach is insufficient, and the full Bayes method is preferred. An instance when it would be crucial
to have good estimates of higher-order moments is characterizing long-lived extreme events on climate
time scales, such as the striking increase in sea level along the northeast coast of North America between
2008 and 2010 reported on by Goddard et al. [2015]. However, we draw attention to the idealized nature of
our synthetic data experiments. Given actual observations, some model misspecification is inevitable, and
the actual most likely values will be uncertain. That the algorithm described here is reasonable for the case
of tide-gauge sea-level data is supported by the residual analysis described in Supporting Information S1.3
and the references given in section 3. Nevertheless, our results give valuable guidance for future sea-level
studies, demonstrating that full Bayes methods are safer and more transparent than empirical Bayes
approaches in terms of their representation of uncertainty.

Our qualitative findings that empirical Bayes underestimates uncertainty and that full Bayes provides more
reliable credible intervals are unsurprising and consistent with general expectations [e.g., Carlin and Louis,
2000; Kang et al., 2009; Cressie and Wikle, 2011]. It is nonetheless useful to quantify the degree to which
empirical Bayes methods underestimate uncertainty on the sea-level field determined from tide-gauge
records, and where exactly differences arise in the context of a fully Bayesian framework. In some cases,
adjustments (e.g., bootstrapping) applied to empirical Bayes solutions have been shown to make them
more reliable and account for variability in model parameters [e.g., Laird and Louis, 1987; Stoffer and Wall,
1991]. We found that the overall reliability of the empirical Bayes approach can be improved and discrepan-
cies with respect to the full Bayes method can be reduced by subtracting mean values from the solutions
during some short, recent common reference interval, for example, the 1983-2001 National Tidal Datum
Epoch (Figure 9). However, such adjustments can degrade the skill of the model solutions in some instances
(e.g., for earlier times), and differences between the full and empirical Bayes results remain, such that full
Bayes still gives better characterization of uncertainties than empirical Bayes (e.g., Figures 9, S11, and S12
and Table 4). General statistical considerations also favor referencing to the longest possible interval; for
example, choosing a shorter reference period introduces spurious temporal structure into the central spatial
moments (e.g., spatial variance) of a spatiotemporal process [Tingley, 2012].

An additional consideration when choosing between full and empirical Bayes approaches is computational
demand. In the present context the full Bayesian approach is preferred to the empirical Bayes method
because there is little difference in computational cost. To run the 200,000 iterations used to generate each
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1000 draw posterior solution sequence (cf. section 3.4), the full Bayes implementation takes ~6 h, the
empirical Bayes ~4 h, on a standard desktop computer.

The hierarchical model described here is the simplest algorithm that we are comfortable applying to real
sea-level data. It is possible to expand this framework for more general application. For example, a more
complex spatial model may be useful, and one can imagine including any number of covariance functions
associated with patterns of dynamic height, thermal expansion, and meltwater sources, with implications
for changes in the gravitational field [e.g., as in Hay et al., 2015]. (As such development would require efforts
beyond our current scope, we have chosen a simpler route for the present purposes of efficiently demon-
strating the differences between full and empirical Bayes approaches.) Global Positioning System (GPS) data
near tide gauges [Woppelmann et al., 2009; Santamaria-Gémez et al., 2012] could also be incorporated, along
with tide-gauge records, to distinguish sea-level changes due to vertical land motion from those due to var-
iable ocean dynamics. Such a framework could be used, for example, to determine whether geocentric sea-
level trends on the United States east coast are consistent with a weakening of the overturning circulation
over the twentieth century [Yin and Goddard, 2013; McCarthy et al., 2015; Rahmstorf et al., 2015]. Such explo-
rations are left to future study.
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