
Estimation of spectral power laws in time uncertain
series of data with application to the Greenland Ice
Sheet Project 2 d18O record

A. Rhines1 and P. Huybers1

Received 15 July 2010; revised 14 October 2010; accepted 5 November 2010; published 6 January 2011.

[1] Errors in the timing assigned to observations degrade estimates of the power spectrum
in a complicated and nonlocal fashion. It is clear that timing errors will smear
concentrations of spectral energy across a wide band of frequencies, leading to
uncertainties in the analysis of spectral peaks. Less understood is the influence of timing
errors upon the background continuum. We find that power law distributions of spectral
energy are largely insensitive to errors in timing at frequencies much smaller than the
Nyquist frequency, though timing errors do increase the uncertainty associated with
estimates of power law scaling exponents. These results are illustrated analytically and
through Monte Carlo simulation and are applied in the context of evaluating the power law
behavior of oxygen isotopes obtained from Greenland ice cores. Age errors in layer
counted ice cores are modeled as a discrete and monotonic random walk that includes the
possibility of biases toward under‐ or overcounting. The d18Oice record from the Greenland
Ice Sheet Project 2 is found to follow a power law of 1.40 ± 0.19 for periods between
0.7 and 50 kyr, and equivalent results are also obtained for other Greenland ice cores.
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1. Introduction

[2] Power law behavior, i.e., when spectral power scales
proportionately with frequency raised to an exponent, has
proven a useful description for climate over a wide range of
timescales [e.g., Wunsch, 1972; Vyushin and Kushner,
2009; Shackleton and Imbrie, 1990]. In order to span a
wider range of timescales, some studies have combined
multiple spectral estimates from low‐resolution, long‐record
proxy data and high‐resolution, modern instrumental data.
Harrison [2002] produced a patchwork spectrum from many
sea level records that generally followed a power law with
an exponent of minus two extending over periods from
∼1 yr to ∼600 Myr. Notable, however, is that sea level
variability scaled more nearly with a power law of −1.4 at
periods shorter than 100 years. Using a similar patchwork
approach, Huybers and Curry [2006] compared many
records reflecting sea and land surface temperature from the
instrumental era and paleorecord and found that temperature
variability followed power laws ranging from −0.6 (tropical)
to −0.4 (high latitudes) at decadal to centennial timescales,
whereas steeper power laws from −1.6 (tropical) to −1.3
(high latitudes) existed at longer periods.
[3] In both Harrison [2002] and Huybers and Curry

[2006], the lower‐frequency, more steeply scaling variabil-

ity is from paleoclimate data, while the higher frequency and
more shallow scaling variability is generally from instru-
mental data. The question arises whether the steepening of
the power law at centennial timescales might be an artifact
of the errors present in certain proxy time series.
[4] There are many potential sources of error in any proxy

time series. Among other complications, the data are sparse,
representative of quantities integrated over poorly defined
geographical areas, generally encoded as a function of
multiple physical and possibly biological variables, and
uncertain in measurement magnitude [e.g., Bradley, 1999].
Proxies are also subject to pervasive uncertainty in timing.
Here we focus on the influence of timing errors upon
spectral estimates of the background continuum because
such errors are common but have received relatively little
attention.
[5] Studies of error propagation in spectral analysis have

primarily addressed the influence of measurement noise.
Indeed, most of the standard methods were developed for
engineering applications where the assumption of perfect
timing is normally adequate. However, timing errors are
generally nonnegligible in paleoclimate data. For example,
even the meticulously layer‐counted Greenland Ice Sheet
Project 2 (GISP2) record has time uncertainty equal to about
2% of the estimated age [Alley et al., 1997]. The case of
jitter (white timescale noise) was explored by Moore and
Thomson [1991], who showed that even small timing errors
can result in large changes in the power spectral estimate of
an oceanographic data set. Extensions by Thomson and
Robinson [1996] suggested that more realistic correlated
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errors have greater consequences for spectral estimation,
although their approach was not tractable outside the
assumption of nearly uniform sampling. Mudelsee et al.
[2009] developed statistical tests to estimate the frequency
and significance of time uncertain spectral peaks using
Monte Carlo methods with the Lomb‐Scargle periodogram,
applying bootstrap to correct the estimator bias. This small
literature represents an important step forward in grappling
with the ubiquitous issue of time uncertainty in all but the
most recent instrumental climate records. However, the
effect of age model errors such as those encountered in
paleoclimate time series on the estimation of power law
climate spectra has not yet been explored.

2. Time‐Induced Changes in the Power Spectrum

[6] The power spectrum, P(f), of a continuous signal, x(t),
can be estimated using the periodogram [Bracewell, 1986]

P fð Þ ¼ jF fð Þj2 �
Z ∞

�∞
x tð Þe�2�iftdt

����
����
2

: ð1Þ

The expectation of the periodogram, E[P(f)], is said to
exhibit power law scaling if

E P fð Þ½ � ¼ af �: ð2Þ

To the extent that the power spectrum of a climate time
series exhibits power law scaling, the logarithm behaves
linearly, log(P) = b log( f ) + log(a). Below we explore the
implications of replacing the signal, x(t), with a time
uncertain version, x(t′). Here, x is not a function, but rather a
representation of a series of measurements placed on a
timescale, t′. We define this uncertain estimate of the
timescale as, t′ ≡ t + �(t), where �(t) is the time error.
[7] Errors in t′ distort the integral in equation (1) because

changes in the timescale alter the frequency and phase of the
Fourier components of the signal. We wish to determine the
ways in which these timing errors alter the inferred spec-
trum, P′( f ), of a time uncertain power law signal, beginning
with an illustrative example. Although real age errors will
typically take the form of a random walk, we first consider a
simpler case where time error grows linearly between the
initial time, ti, and the switch time, ts, and then shrinks
linearly between ts and the final time, tf,

� tð Þ ¼ �1t if ti � t � ts;
�1ts þ �2 t � tsð Þ if ts < t � tf :

�
ð3Þ

[8] The error rate, g, is equal everywhere to d�/dt, and g2
is here defined as −g1ts/(tf − ts), such that the total length of
the time series is unchanged. This leads to a distorted rep-
resentation of the signal, the first half is stretched, while the
second half is compressed. See Figures 1a and 1c for an
illustration of this timing error applied to a red noise signal.
How will such timing errors influence the spectral estimate
of narrow and broadband features present in x(t)?
[9] Our approach is to examine the two segments of the

record characterized by different temporal distortions inde-
pendently, and then combine their spectra to estimate the
spectrum of the full signal. That is, the signal can be

decomposed into two segments by applying rectangular
windows

x tð Þ ¼ x tð ÞP t; ti; tsð Þ þ x tð ÞP t; ts; tf
� �

;

where the windowing function, P, is defined as

P t; t1; t2ð Þ ¼ 1 if t1 � t < t2;
0 otherwise:

�

[10] Such windowing introduces sidebands due to the
Gibbs phenomenon [e.g., Priestley, 1994]. Furthermore, the
sum of the spectral estimates of the individual segments will
differ from the spectral estimate obtained from the entire
segment owing to differences in frequency resolution and
interactions of the phase across the two segments, but in the
synthetic experiments described later, we show that the
average influence of these effects is negligible. Note that
segmenting time series, computing their spectral estimates,
and then averaging is a common procedure for estimating
the spectrum of a noisy time series [Bartlett, 1950].
[11] If x(t) contains a periodic component with frequency,

f�, the time errors (equation (3)) will shift the variability to
lower and then higher frequencies, f1 and f2, defined by

f� ¼ 1þ �1ð Þf1 ¼ 1þ �2ð Þf2; ð4Þ

and the resulting spectral estimate will split the original peak
in two

P′ � P1′þ P2′ ¼ a1� f � f1ð Þ þ a2� f � f2ð Þ; ð5Þ

where d( f ) is the Dirac delta function. Here a1 and a2 are
positive constants whose magnitude will depend upon the
length of the record segments and the normalization con-
ventions that are used in reporting spectral power. In prac-
tice, the samples are taken over finite window lengths, so
that the peaks at the inferred frequencies are sinc functions
whose resolution will depend on the scope of time errors
and the length of the record. If the difference between the
two frequencies is small, the two peaks may not be resolved
and the effect would be to simply blur the original peak.
[12] Interestingly, while time errors significantly distort

estimates of the power spectrum in the vicinity of spectral
peaks, power law scaling estimates obtained from stretched
and squeezed time series appear largely intact (Figures 1b
and 1d). This insensitivity of power law scaling estimates
to time errors can be understood from the self‐similarity of
power law signals. If P1 and P2 are power law spectra as in
equation (2), their inferred spectra are simply scaled and
frequency shifted in proportion with the rate of change of
the time error (equation (4))

P1′ ¼ a1 1þ �1ð Þ�f �; ð6Þ

as follows from the similarity theorem [e.g., Bracewell,
1986, pp. 101–103], and likewise for P2′ . The logarithm of
the resulting spectral estimate is then

log P′ð Þ � log P1′þ P2′ð Þ
¼ � log fð Þ þ log a1 1þ �1ð Þ�þa2 1þ �2ð Þ�

� �
; ð7Þ
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where the identity that log(a + b) = log(a) + log(1 + b/a) is
used. The constant value in equation (7) is complicated, but
the logarithmic scaling of P′(f) with frequency according to
b is unaffected when compared with equation (2). Although
a simple example, equation (7) illustrates how power law
scaling can remain invariant in the presence of timing errors.
A linear rescaling of the timescale of a signal does not affect
a spectral power law. If the power law is an approximate
description of a noisy discrete spectrum (as is typically the
case), the estimate of that power law is also unaffected by a
linear rescaling of the timescale.
[13] This line of reasoning can be extended to a more

general case, in which the rate of time error changes
numerous times over the course of a record. As with the

two‐segment case, we view a time series which has been
variously stretched and squeezed by N changes in g as a
composite of N shorter segments xn(t). Using a similar
segmenting approach, the power spectrum of the individual
segments will follow the same frequency scaling as
equation (7), and give an expected power spectral estimate
of x(t ′) that remains proportional to f b.
[14] Segments of a signal following a spectral power law

still display that same power law after being differentially
compressed or stretched, at least over the resolved fre-
quencies and for the simple piece‐wise manner in which the
spectrum is estimated. The suggestion is that time errors do
not distort the expectation of estimates of b. In section 3 we

Figure 1. Example of the effect of time errors on spectral estimates. (a) Measurements from a core sec-
tion nominally spanning 100 kyr and containing a power law signal with a 0.2 kyr−1 narrowband com-
ponent. (b) The power spectral estimate of 1 realization on the correct timescale (black line), with the
mean over 1000 realizations (gray line, shifted downward by 3 decades for visual clarity), and a −2 power
law for reference (dotted line). (c) The measurements on an incorrect timescale where time error grows at
1/3 yr yr−1 between 0 and 50 kyr of estimated time and then at −1/3 yr yr−1 between 50 and 100 kyr,
leading to nonuniform sampling in actual time. Ticks marks correspond to the same sequence of points
in Figure 1a. (d) The power spectral estimate of the measurements on the incorrect timescale for 1 real-
ization (black line) and the mean over 1000 realizations of random signals composed of a power law plus
narrowband variability and subject to the same time error (gray line), with a −2 power law for reference
(dotted line). The narrowband component is split into two broadened peaks, while the power law back-
ground is only affected near frequencies having narrowband energy. The majority of the background
remains a −2 power law in the expectation.
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examine more general timing errors and more general esti-
mates of the power spectrum and find similar behavior.

3. Synthetic Experiments

[15] We now wish to determine whether the simple result
from section 2 holds in practice, and to examine the influ-
ence of more realistic time uncertainty upon more complex
spectral structures. We adopt a Monte Carlo approach of
generating random signals with a known spectral structure,
distorting them in time, and then examining the resulting
spectral estimate. Records are initially generated at very
high resolution, in order to better approximate continuous
signals and avoid sampling and edge effects. We model the
time error as a finite length random walk arising from
cumulative counting errors. Though the counting error
distribution is not Gaussian, its variance is finite and the
expected cumulative error approaches a normal distribution
after tens of counted layers. Details and physical motiva-
tion for this model are provided in Appendix A.
[16] Though we apply an error model suitable for dis-

cretely layer‐counted records, other tests using continuous
error models suitable for chronologies based on accumula-
tion rates [Huybers and Wunsch, 2004] or using piece‐wise
linear errors as discussed in section 2, all yield consistent
results. Timing errors with a periodic or quasi‐periodic

component, or errors correlated with the value of the signal
also provide equivalent results, despite their large effect on
narrowband variability [Herbert, 1994].
[17] There are several possible ways to estimate power

law scaling and the value of b, whose results are not nec-
essarily equivalent, particularly in the case of noisy and
sparse data [Clauset et al., 2009]. Our approach is to use an
ordinary least squares estimate of the spectral slope of
log(P) versus log( f ), where the mean of log(P) and log( f )
is first subtracted so that the y intercept is zero, the
covariance that otherwise arises between the y intercept and
b makes it more difficult to interpret the results. P is esti-
mated using a standard periodogram. Another popular
method is detrended fluctuation analysis [e.g., Vyushin and
Kushner, 2009] but which can be shown to be equivalent to
the more common Fourier transform methods used here
[Heneghan and McDarby, 2000] up to differences in how
the detrended fluctuations are weighted in estimating the
slope.
[18] Once a new timescale is generated, the time series

must be resampled on a regular grid. Many methods are
available for this interpolation, including mean, linear
interpolation, random, or bootstrap infilling [Wilson et al.,
2003; Mudelsee et al., 2009]. In these tests, linear interpo-
lation is used for the sake of simplicity, and because its
distortion is easily identified and contained. Interpolation
reduces the variance of a signal, but these effects are con-
fined to the highest frequencies, i.e., near the Nyquist fre-
quency, fNy ≡ 1/2Dtmax. Thus, biases in power law fits of the
continuum background can be minimized by using the
appropriate frequency cutoff. Based on our experience with
power law signals, we find that a safe rule of thumb is to use
a cutoff of fNy/2, though the details associated with the
signal structure and time error could yield cases where other
cutoffs are more appropriate. More generally, computing
statistics using a range of cutoffs and determining the sen-
sitivity of the result appears prudent when substantial time
error is suspected.
[19] First, an ensemble of 1000 randomly generated b =

−2 power law signals are sampled on timescales t′ produced
using the counting errors described in Appendix A (Figure 2).
The underlying time series have ten times the resolution of
the signals used in the analysis, in order to avoid the high‐
frequency sampling bias discussed above. The average fit of
the power law across these randomly generated signals is
unaffected by the errors in timing, remaining at −2 to within
the precision of the fit. We do note, however, that the dis-
tribution of realized power laws is 8% wider when subject to
timing errors, t′, of 5% of the length of the record than when
compared against the ensemble of power laws not subject to
timing errors. For the sake of comparing the spectra from
different realizations, the total length of the signal is then
constrained to the original length by subtracting the linear
trend in time error between the first and last data point,
making the discrete frequency axis identical for each reali-
zation. As shown in section 2, such scaling in the time
domain does not influence the power law in the frequency
domain. The error structure then takes the form of a
Brownian Bridge, discussed in more detail by Huybers and
Wunsch [2004].
[20] Next we examine a mixed time series, having peri-

odic and power law variability. The imposition of timing

Figure 2. Illustration of the sensitivity of power spectral
estimates to time errors. Signals are nominally 100 kyr long,
and the average estimate of the power spectrum of each over
1000 realizations is plotted on the correct (gray lines) and
perturbed (black lines) timescales. The perturbed timescales
have an expected error equal to 5% of the time series length
(see Appendix A). The timescale error is then detrended so
that all spectra can be plotted on a common set of axes (see
text). Line i is an ensemble of b = −2 power law signals are
perturbed. The resulting expectation of the spectrum is
unchanged. For line ii, narrowband energy of 1 kyr−1 is
embedded in an ensemble of b = −2 power law signals, and
the same timescale errors are applied. The spectral estimate
in the vicinity of the peak is distorted as the power in the
peak is scattered over nearby frequencies. Similarly for lines
iii and iv, discontinuities in scaling exponents are smoothed
by errors in timing.
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errors results in spectral distortion in the vicinity of the peak,
while the remainder of the spectral estimate maintains the
original power law scaling (Figure 2). Effects similar to
those of narrowband distortion are observed when multiple
background scaling regimes are present. For example, in a
spectral break between two power law scaling exponents,
the distribution of power about the knee of the spectrum is
smoothed out while the power law regions are unchanged
(Figure 2). If discontinuities in the spectrum are rapid or
numerous, much of the narrowband detail can be obscured
by this sort of smoothing.

4. Application to GISP2

[21] Insofar as the spectrum of the climate record scales as
a power law (or several power law regimes), sections 2
and 3 suggest that time uncertainty will not affect esti-
mates of b away from the Nyquist frequency of the largest
time step, at least in the expectation. Narrowband variations
will be distorted by time errors, but the example of section 2
suggests that their influence will tend to be localized in
frequency. It is therefore useful to investigate the uncertainty
in the estimation of b for a real climate record due to age
model errors: is it best characterized as a power law (which
is relatively insensitive to time errors) or to a noisy collec-
tion of narrowband processes, which can be distorted sig-
nificantly by modest time errors? This question is explored
by applying realistic time errors discussed in Appendix A to

the GISP2 d18O record (Figure 3) and examining the scaling
of the resulting power spectra.
[22] We evaluate the power spectral estimate of the

GISP2 d18O record, using the counting error described in
Appendix A to perturb the standard age model record
(Figure 3a). The record is limited to 50 kyr ago through the
present, due to the larger and more poorly understood timing
errors in deeper sections of the core. We note that there is no
significant concentration of climatic precession energy. This
could stem from a lack of sensitivity to precession forcing,
nonlinearities, or the relative shortness of the record making
it difficult to resolve bands with 21 kyr periods. A fit is
obtained for b in each realization, with spread evident under
different age models (Figure 4a). The residuals of the
ordinary least squares fits are used to estimate a normal
probability distribution of b for each realization, and these
distributions are combined to produce an estimate of the
uncertainty in b (Figure 4c). For the most recent 50 kyr of
GISP2, the original timescale produces an estimate of b0 =
−1.41 ± 0.17. When time uncertainty is considered, the
distribution shifts and broadens slightly such that best =
−1.40 ± 0.19. This is consistent with the slightly greater
spread in realizations of b obtained when time errors were
introduced into the synthetic records. Similar results are
obtained when the timescale error is correlated with the d18O
magnitude or, e.g., with orbital eccentricity or other climate
forcing signals, such complications do not appear to influ-
ence the result in any significant way, nor do they appre-
ciably modify the power law spectra obtained in section 3. A
similar analysis performed on the North Greenland Ice Core
Project (NGRIP) core [Svensson et al., 2006] yields results
equivalent to those of GISP2 when the same base time
period and sampling rate are used for both records. Along
the same lines, an analysis of the Greenland Ice Core Project
(GRIP) record also produces results which agree with those
of Ditlevsen et al. [1996] (namely, a spectral slope of
−1.6 for periods greater than 200 yr) when the same time
intervals and cutoff frequencies are used in analyzing both
records. For both NGRIP and GRIP, inclusion of higher‐
frequency data made available by the higher sampling rate
than GISP2 allows the break in the spectrum at centennial
timescales to be resolved. This leads to much shallower
power law estimates, apparently not as a consequence of
distortion of the power spectrum, but because a linear fit
is being improperly attempted over two distinct scaling
regimes.
[23] We find that the scaling exponent is approximately

invariant under the expected time uncertainty. Resampling
the record over 1000 realizations for a range of prescribed
expected fractional error E[∣(t − t′)/t∣] at the oldest point, we
estimate b for each time series (Figure 5). When fmax equals
fNy/2, the fit remains within 5% of the unperturbed age
model fit until the age error is 6%, exceeding the estimated
counting error by a factor of three, indicating that the scaling
is robust under the expected time uncertainty. Under more
extreme age model errors of 10% or more, there is greater
spread in the estimates of b with the standard deviation
growing from 0.17 to 0.2 and bias appears that can exceed
5%. In practice, we then expect relatively large time
uncertainty of 10% or more to increase the likelihood that
scaling of the power spectral estimate will be incorrectly
estimated due to interpolation biases if our rule of thumb is

Figure 3. (a) The Greenland Ice Sheet Project 2 d18O record
(solid line). Modeled cumulative counting errors in the most
recent 50 kyr lead to an expected age error curve which grows
with the square root of age (dashed line). (b) The Meese/
Sowers depth‐age scale [Meese et al., 1994]. (c) Because of
compaction in the core the sampling interval increases with
age, limiting the frequency resolution in older sections of the
record.
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used. In contrast, interpolation errors are important for much
smaller expected cumulative timing error when the spectrum
is estimated out to the highest possible frequencies.

5. Discussion and Conclusion

[24] Estimates of power law scaling exponents are insen-
sitive to time uncertainty in the expectation, and this invari-
ance was demonstrated upon synthetic records (section 3) and
for the GISP2 d18O record (section 4). This invariance can be
understood from the power law being preserved under shifts,
stretches, and squeezes of a timescale (section 2). Although
time uncertainty is inevitable in paleoclimate records, mag-
nitudes comparable to that in the GISP2 ice core do not
appreciably affect estimates of power law scaling. In partic-
ular, examination of the GISP2 power law behavior under
many plausible age model realizations yielded results virtu-
ally identical with those obtained using published age mod-
els. If errors exceed 10%, the distribution widens by more
than 15% and the expectation begins to be affected through a

bias introduced by interpolation. Furthermore, individual,
realistic age model realizations can result in power spectra
that diverge significantly from the expectation, so that
examination of power laws under a wide range of plausible
timescales is prudent, especially if narrowband concentra-
tions of energy may be present.
[25] A practical issue which will be encountered when

resampling any record is that interpolating sample values at
intermediate points reduces high‐frequency variance, and
this region of the spectrum should be avoided in subsequent
analysis of power laws. Limiting the analysis to frequencies
below half the Nyquist frequency seems to be a useful rule
of thumb, at least for the random walk age distortion
explored here. This is important for paleoclimate time series,
which are often difficult to obtain at a high temporal reso-
lution and are generally sampled nonuniformly in time.
[26] For paleoclimate proxy data, the appropriate choice

of a time error model differs according to the type of proxy
and the manner in which its age was estimated. The error
model presented in Appendix A should be broadly appli-

Figure 4. The effect of age model errors on the power spectral estimate of the last 50 kyr of the GISP2
d18O record. The 10,000 age model realizations are drawn from the cumulative counting error model (as
discussed in Appendix A), the error of which grows with age to an expected relative error at the oldest
point of 2%. (a) The power spectral estimate of the standard age model (black line), along with the mean
power in each frequency band over the different age model realizations (gray line).The 95% confidence
intervals of the b estimates are computed at frequencies below fNy/2 (dotted lines). (b) The least squares
maximum likelihood estimate of b for d18O using the original age model (dotted line) and its distribution
(solid line), which is assumed to be normal. (c) Normalized histogram of the age uncertain maximum
likelihood b estimates from each time error realization (bars), and the combined uncertainty now
accounting for the distribution associated with each maximum likelihood estimate (solid line). The
original timescale gives b0 = −1.41 ± 0.17, whereas the ensemble of perturbed timescales gives best =
−1.40 ± 0.19. The majority of the uncertainty comes from the estimation procedure not time errors.
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cable for counted timescales, such as those associated with
varved sediments, tree rings, and annually banded ice core
records, all of which are expected to fundamentally follow a
random walk pattern. The insensitivity of power law esti-
mates to timing error holds for this counting error model, as
well as for continuous random walk error models and piece‐
wise error models. We have found no form of time errors,
other than those with very large magnitudes, that give rise to
significant changes in either the expected value or spread of
power law estimates. It thus appears that timing error is not
responsible for the steeper power law scaling identified in
paleoclimate records, relative to the scaling at higher fre-
quencies that can be examined using instrumental records
[Harrison, 2002; Huybers and Curry, 2006], though it
remains to be seen whether the steeper power law scaling
can be attributed directly to dynamical processes.

Appendix A

[27] In order to generate appropriate timing errors, we
require a description of the process by which age models are
created. Paleoclimate signals are generally recorded in some
accumulating medium, e.g., ocean sediments, lake varves,
glacier ice, corals, speleothems, or tree trunks. For purposes
of specificity, we develop a time error model that is relevant
to layer counted ice cores, and the Greenland Ice Sheet
Project 2 (GISP2) core in particular. See Huybers and
Wunsch [2004] for a development in the context of a
marine sediment core.
[28] The Meese/Sowers depth‐age scale for GISP2 was

derived by counting annual layers with several independent
optical, chemical, and electrical techniques [Meese et al.,
1994]. The GISP2 core is exceptionally well dated because
the high accumulation rate makes discontinuities in stratig-
raphy relatively unlikely, and the multiparameter continuous
count method reduces the probability of missing or over-
counting years [Meese et al., 1997]. Errors were estimated by
intercomparison with volcanic ash layers and independently
published age models [Alley et al., 1993]. Estimates place the

error in the upper 2500 m (∼0–58 kyr) at an absolute maxi-
mum of 10%, while the errors are in fact believed to be
smaller than 2% [Alley et al., 1997]. This error increases
through 2500–2800 m depth (∼58–110 kyr), where dis-
continuities in the core lead to a layer undercount of up to
20% [Meese et al., 1997]. Thus, in order to limit the analysis
to perturbations of a well‐dated record, we focus our attention
to the most recent 50 kyr of the core, in which the expected
age error is less than 2%. The limiting case of 10% error is
also considered, but only as a worst case scenario.
[29] Annual layers were counted to discern the flow of

time with depth in the GISP2 core [Alley et al., 1997].
Seasonal alternations in optical properties of ice occur
because of changes in the concentration of dust, aerosols,
and other impurities over the course of the seasonal cycle as
well as changes in bubble density associated with the sea-
sonal cycle in accumulation, temperature, and solar insola-
tion. Lighter bands in Greenland ice tend to be associated
with summer hoar complexes, while darker and more
transparent layers are associated with uninterrupted winter
accumulation [Gow et al., 1997; Alley et al., 1997]. In some
portions of the core, springtime dust layers are also clearly
visible. These optical markers, in conjunction with electrical
conductivity measurements, permit for a multiparameter
layer count. Note, however, that bubbles no longer exist in a
gaseous phase at depths greater than 1400 m, instead
forming clathrates and eliminating one of the key visual
markers. Coupled with dynamic flow thinning, this makes it
increasingly difficult to count annual layers in deeper sec-
tions of the core.
[30] The errors associated with counting annual layers are

cumulative and, therefore, naturally modeled as a random
walk. Starting from the top and counting layers downward,
counted time accrues at a rate of one layer per year, t′n+1 =
t′n + tn, where tn represents the possibility that the annual
band was correctly counted once, tn = 1, a layer was missed,
tn = 0, or that more than 1 year was counted, tn = 2, 3, 4…
Counts are confined to integer numbers, so that the error
structure is described by a random walk on a lattice. We

Figure 5. The sensitivity of the estimate of b to different levels of time uncertainty. The mean estimate
of b is plotted as a function of the expected relative age model error of the oldest data point. The means of
the time uncertain b estimates for fmax = fNy/2 are shown with expected errors reaching extreme levels of
25%. The fit does not deviate significantly from that of the original signal until the expected age model
error is in the vicinity of 10%.
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define P1 as the probability of correctly counting a given
true annual layer, tn = 1, au as the probability of not
counting it, tn = 0, and ao as the probability of counting an
extra layer within the true annual band, tn = 2, conditional
on one layer already having been counted. Assuming that
the conditional probability of counting an additional layer is
constant, the probability of counting m − 1 extra layers is
then ao

m−1P1. For the moment assume that the mean of the
distribution is one, so that the number of years missed, on
average, balances the number of extra years counted. These
assumptions, along with normalization, lead to the coeffi-
cient values

�u ¼ �o ¼ 1� ffiffiffiffiffi
P1

p
;

and thus to the probability distribution

Pr �ð Þ ¼
�u if� ¼ 0
P1�

��1
o if� � 1

0 if� � �1:

8<
: ðA1Þ

Equation (A1) is a mixed distribution that is geometric for
t ≥ 1. The variance of the distribution is finite, and the
random walk age error which is generated by accumulation
of these counting errors, �(tn), grows proportionately to

ffiffiffiffi
tn

p
(Figure A1). Thus, in this symmetric scenario, the expected
fractional error between true and estimated time, htn − t ′ni/tn,
will in fact shrink as 1/

ffiffiffiffi
tn

p
. This would imply that the time

error grows at a slower than linear rate, in contradiction to
previously reported error estimates [Alley et al., 1997]. In
order to obtain errors upward of 2% at 50 kyr, one must set
the parameter P1 to be 0.015, which is a much lower
probability of correctly counting a layer than seems plau-
sible [e.g., Gow et al., 1997].
[31] Interestingly, equation (A1) is consistent with the

expected error for atomic clocks, where much of the error
arises from biases toward under‐ or overcounting. Intro-

duction of a bias parameter allows for a more general rep-
resentation of cumulative timing error and makes it
straightforward to account for the error estimates from the
literature. Bias is represented by setting the mean rate of
counting to differ from one. This bias, b, can be constant,
stationary, or nonstationary, depending on the physical sit-
uation. For a long ice core record the bias can be expected to
drift with depth as the condition of the ice changes and,
importantly, as the Holocene calibration loses accuracy.
[32] Similar to the symmetric case, normalization and the

requirement that the expected value of the distribution is
equal to 1 + b leads the determination of the coefficients,
which now depend on the bias parameter b in addition to P1

�u ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 1þ bð Þ

p
;

�o ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
P1

1þ b

r
:

[33] Over many steps, the expected cumulative error �(t)
approaches a normal distribution centered on b, as follows
from the central limit theorem. By computing many reali-
zations, the variance of the distribution can then be used to
numerically determine P1 such that the desired 2% expected
error of 1 kyr is achieved at 50 kyr. We model the bias as an
autoregressive order one process, with an autoregressive
coefficient of 0.999 (corresponding to a decorrelation time
of 2 kyr) and noise parameter of 7.5 × 10−3. This produces
an error structure close to that described by Alley et al.
[1997] when P1 is set to 0.73, a value which is near the
estimated “worst case” ability to identify annual layers
[Rasmussen et al., 2006]. The bias parameter is given upper
and lower limits, P1 − 1 ≤ b ≤ 1 − P1, in order to maintain
consistency with the prescription of P1.
[34] Note that equation (A1) assumes that the probability

of under‐ or overcounting layers is independent of previous
counting errors, which provides for simplicity, but fails to
account for the expectation of a relatively constant accu-
mulation rate that tends to curtail the likelihood of long
strings of under‐ or overcounts. The high probabilities of
miscounting an individual annual layer and miscounting
strings of annual layers may make this error model some-
thing of a worst case scenario, but which would then
underscore the finding that power law estimates are insen-
sitive to timing error.

[35] Acknowledgments. The authors would like to acknowledge
helpful comments from Martin Tingley, Carl Wunsch, Jake Gebbie, Nathan
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