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ABSTRACT

Reconstructing the spatial pattern of a climate field through time from a dataset of overlapping in-

strumental and climate proxy time series is a nontrivial statistical problem. The need to transform the proxy

observations into estimates of the climate field, and the fact that the observed time series are not uniformly

distributed in space, further complicate the analysis. Current leading approaches to this problem are based on

estimating the full covariance matrix between the proxy time series and instrumental time series over

a ‘‘calibration’’ interval and then using this covariance matrix in the context of a linear regression to predict

the missing instrumental values from the proxy observations for years prior to instrumental coverage.

A fundamentally different approach to this problem is formulated by specifying parametric forms for the

spatial covariance and temporal evolution of the climate field, as well as ‘‘observation equations’’ describing

the relationship between the data types and the corresponding true values of the climate field. A hierarchical

Bayesian model is used to assimilate both proxy and instrumental datasets and to estimate the probability

distribution of all model parameters and the climate field through time on a regular spatial grid. The output

from this approach includes an estimate of the full covariance structure of the climate field and model pa-

rameters as well as diagnostics that estimate the utility of the different proxy time series.

This methodology is demonstrated using an instrumental surface temperature dataset after corrupting

a number of the time series to mimic proxy observations. The results are compared to those achieved using the

regularized expectation–maximization algorithm, and in these experiments the Bayesian algorithm produces

reconstructions with greater skill. The assumptions underlying these two methodologies and the results of

applying each to simple surrogate datasets are explored in greater detail in Part II.

1. Introduction

To put current and projected future changes of the

climate system into context, it is imperative to under-

stand the natural variability and past evolution of the

climate system. Particular attention has been given in

this regard to the time evolution of the surface temper-

ature field over the last several thousand years, as this

variable is of societal importance and features a relatively

complete instrumental record extending back to about

1850. Given that a longer record is desirable for both

investigating the dynamics of the system and testing the

output of climate models, it becomes necessary to call

upon paleoclimate observations, which are noisy and

sparsely distributed in space, to extend reconstructions

back in time. Information about surface temperatures

over the last few millennia can be derived from historical

documents, and from elements of the natural world sen-

sitive to local temperature variations, such as tree rings,

ice cores, and lake floor sediment cores. For a general

review of the uses of these various proxies, see NRC (2006)

and Jones et al. (2009).

A common goal when analyzing paleoclimate data is

to estimate, with uncertainties, the values of a field on a

regular spatial grid (the target locations), at regularly

spaced time intervals. For example, much attention has

been paid to the problem of reconstructing annual mean
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surface temperatures on a regular grid and estimating

the regional average of some or all of these grid points

(see NRC 2006 and references therein). In general there

are two distinct types of data used in paleoclimate re-

constructions of a climate field:

d Instrumental time series exist at a number of spatial

locations, but perhaps not at all target locations. These

time series are assumed to be in the correct units, are

often of different lengths, and might feature inter-

mittently missing values.
d Proxy time series exist at a number of spatial locations,

some but not all of which might correspond to target

locations. These time series are generally longer than

the instrumental time series and are not in the same

units as the climate field but are assumed to contain

information about the climate field; they might, like

the instrumental time series, feature intermittently

missing values. There may be several distinct types of

proxy records, such as various measurements on tree

rings, ice cores, lake sediments, corals, etc.

The proxy datasets overlap with the instrumental data-

set during a calibration interval. The goal of the analysis

is to assimilate all available information to estimate, with

uncertainties, either the time series of spatial means, or

the field values through time at the target grid locations.

The simpler problem of reconstructing the spatial mean

can be approached by combining all instrumental records

in a region, combining all proxy records in a region, and

then linearly transforming the proxy composite into the

units of the instrumental composite. A number of differ-

ent methods have been used to form the proxy composite

and to estimate the coefficients used in the transforma-

tion; see Jones et al. (2009) for a discussion of these

‘‘composite plus scale’’ variants.

Estimation of the spatial mean is complicated by the

fact that neither the proxy nor the instrumental time

series are expected to be uniformly distributed in space,

while the field under analysis will typically display spa-

tial covariance. The sample average across the proxy or

instrumental observations available for a given year is

therefore generally not the best estimate of the spatial

mean for that year. The estimate of the mean should

consider the spatial distribution of the available data,

and this is often done in practice by weighting the proxy

observations by the areas they are conjectured to rep-

resent (e.g., Mann and Jones 2003; Mann et al. 2005) or

by condensing large numbers of closely clustered proxy

time series, such as networks of tree ring measurements,

by retaining only a few dominant modes from a principal

component analysis (PCA) (e.g., Mann and Jones 2003).

These procedures involve a number of steps that com-

plicate the propagation of uncertainties. Likewise, the

standard estimate of the uncertainty—the sample stan-

dard deviation scaled by the square root of the sample size

(e.g., Zar 1999)—is generally not an accurate reflection of

the uncertainty in the estimate of the mean. The uncer-

tainty in the estimate of the spatial mean is a function of

the spatial covariance of the field, which determines the

extent to which observations at a heterogeneous set of

locations can be used to predict the field at other locations.

We are interested not only in the time evolution of the

spatial mean of climate fields, like temperature, but also

the spatial patterns of variability about the mean value.

Inferences on the field as a whole, rather than simply the

mean value, provide more complete characterizations

of the climate variable, which can be compared to the

output of climate models and may be useful for studying

the dynamics of the climate system (e.g., Riedwyl et al.

2009). In addition, an estimate of the spatially complete

field, as well as the associated uncertainties, can be used

to produce estimates of the spatial mean and associated

uncertainty that take into account the spatial distribution

of the observations and the spatial covariance of the field.

A number of methods have been developed and used

to reconstruct climate fields from overlapping proxy and

instrumental datasets (e.g., Jones et al. 2009). These

methods are generally based on multivariate regressions,

using the overlap between the instrumental and proxy

time series to establish the relationship between the two

types of data, and may use the leading modes resulting

from a PCA rather than the original time series. The

estimated coefficients are then used to predict the values

of the instrumental time series back through time using

the available proxy time series (Fig. 1). Some approaches

consider the linear relationships between all possible

pairs of proxy and instrumental time series (e.g., Mann

et al. 1998; Schneider 2001; Luterbacher et al. 2004),

whereas others use only those proxies within a certain

radius to predict the field at each grid point (e.g., Cook

et al. 1999). While the former exploits covariances be-

tween time series of the field at widely separated loca-

tions, the latter, being based on localized regressions,

does not. The extent to which each set of assumptions is

correct will likely depend on the particular field being

analyzed.

At the heart of these multivariate regression approaches

is the estimation of the mean, through time, of each

proxy and instrumental time series, and the joint co-

variance matrix of the instrumental and proxy datasets—

a submatrix of which must be inverted to calculate the

regression coefficients. Some form of regularization is

often required to ensure the existence of the matrix in-

verse, and a solution to this problem is offered by the reg-

ularized expectation–maximization (RegEM) algorithm

of Schneider (2001), which has been used in a number of
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climate field reconstruction studies (Rutherford et al.

2003; Zhang et al. 2004; Rutherford et al. 2005; Mann

et al. 2007, 2008; Steig et al. 2009). There are both ben-

efits and limitations to this methodology, which we will

partly address here and in more detail in Tingley and

Huybers (2010, hereafter Part II).

An alternative analysis strategy can be formulated by

specifying parametric forms for the spatial covariance and

temporal evolution of the field and the relationships be-

tween the data types and the field. Here we present a hi-

erarchical Bayesian model, referred to as BARCAST for

‘‘A Bayesian Algorithm for Reconstructing Climate

Anomalies in Space and Time,’’ that is used to infer the

joint distribution of the scalar parameters that define the

model and the field values through time at the target lo-

cations. (A package of Matlab code that implements the

algorithm is available at ftp://ftp.ncdc.noaa.gov/pub/data/

paleo/softlib/barcast/). Multiple draws from the posterior

result in spatially and temporally complete ensembles of

the climate field evolution compatible with the data and

the model assumptions—an information-rich end prod-

uct. Probability distributions for various statistics can be

estimated from this ensemble, from simple measures like

the time series of spatial means to more exotic quantities

like the maximum decadal average over a specific region.

The model also outputs the uncertainty in all scalar pa-

rameters, including the coefficients that transform the

proxy values into the units of the field. Posterior analysis

can quantify both the relative contributions of the dif-

ferent proxies to the field reconstruction and the extent to

which the model can constrain the various parameters,

while residual analysis can be used to check the validity of

the model assumptions and identify particular time series

that are not in agreement with the others.

Section 2 describes the technical details of BARCAST,

section 3 presents an example demonstrating the func-

tionality of BARCAST and compares results to those

from the RegEM algorithm, section 4 discusses limita-

tions of the Bayesian approach and a number of possible

extensions to the basic model developed in section 2,

and section 5 offers conclusions. Part II provides a de-

tailed comparison of the assumptions and performance

of BARCAST to the more established RegEM method.

For ease of description we will assume the field of interest

is that of annual mean surface temperatures, though the

method we have developed is general and in principle

applicable to the reconstruction of any climate field.

2. The formulation of BARCAST

a. Basic approach

Our approach to climate field reconstruction is based

on a hierarchical Bayesian model consisting of three

levels: the process level describes the evolution of the

true surface temperatures as a multivariate autoregressive

process with spatially correlated innovations; the data

level specifies the relationships between the measure-

ments (both proxy and instrumental) and the true field

values; and the prior level specifies diffuse and, where

possible, conjugate (e.g., Gelman et al. 2003) prior dis-

tributions for all unknown parameters to provide closure

to the scheme (Fig. 1). In the language of statistics, this

formulation is referred to as a discrete time, continuous

state hidden Markov model (e.g., Wikle and Berliner

2006). Notation is summarized in Tables 1 and 2.

b. The model equations

1) PROCESS LEVEL

The evolution of the true temperature field sampled

at a finite number of spatial locations Tt is assumed to

follow a multivariate first-order autoregressive process:

FIG. 1. Schematics of various approaches to reconstructing cli-

mate fields. (a) The RegEM algorithm models the relationship

between the proxy (WP) and instrumental (WI) observations and

uses this relationship to predict the instrumental values when only

proxy observations are available. (b) The hidden Markov model

used in BARCAST. Arrows denote the directions of conditional

dependencies, in the sense that the observations WI,t and WP,t are

determined only by the true field vector Tt, which is in turn de-

termined by the previous value of the field Tt21. The middle row

of arrows, linking the Tk, corresponds to the process level, while the

top and bottom rows, linking the T to the WI,P, correspond to the

data level. (c) A possible generalization of the basic hidden Markov

model appropriate for a proxy that integrates two years of the local

value of the field.
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T
t
� m1 5 a(T

t�1
� m1) 1 �

t
, (1)

where m is the mean of the process, a is the AR(1) co-

efficient, 1 is a vector of ones, and the subscript t indexes

the year. A more general model could be formulated by

replacing the scalar a with a matrix, which would allow

the elements of Tt to have different autoregressive pa-

rameters, and to display cross dependencies. Here and

below we make the simplest assumptions that we con-

sider reasonable, and we discuss possible extensions in

section 4. The innovations �t are assumed to be indepen-

dent and identically distributed (iid) normal draws, �t ;

N(0, S), with spatial covariance structure given by

S
ij

5 s2 exp(�fjx
i
� x

j
j), (2)

where jxi 2 xjj is the distance between the ith and jth

elements of the field vector T. Note that this formulation

of the spatial covariance intentionally excludes a nugget

effect (e.g., Banerjee et al. 2004); the reason for this is

addressed below. The implications and limitations of

assuming an exponentially decaying spatial covariance

structure will be addressed in detail below, but for now

we note that the Climate Research Unit (CRU) annual

mean instrumental temperature data (Brohan et al. 2006)

does seem to exhibit plausible exponential decay of cor-

relation with separation, at least for separations smaller

than about 4000 km (Fig. 2). The saturation of correla-

tion at positive values at length scales longer than 4000 km

is likely the result of trends in the CRU dataset—indeed,

if data are detrended first the correlation decays to values

indistinguishable from zero.

2) DATA LEVEL

It is useful to decompose the vector T, at each year,

into three subvectors:

T 5

T
I

T
P

T
R

0
B@

1
CA, (3)

where TI and TP are the true temperatures at locations

for which there are instrumental or proxy observations,

respectively. If there is both a proxy and instrumental

observation at the same location, then the true field

value for that location appears in both TI and TP. The

values for TR are the true temperatures at the target

locations where there are no observations. For the ex-

amples presented below, we select these target locations

to be the remaining nodes of a uniform grid.

TABLE 1. Forms of the priors and conditional posteriors, along with brief descriptions, for the unknowns inferred by BARCAST.

MV stands for multivariate, and nonstandard indicates that the conditional posterior does not follow a well-known distribution.

Prior form Conditional posterior Description

T0 MV normal MV normal Field values for the time step prior to the first observations.

Tk51. . .k — MV normal Field values at each time step for which there are observations.

a Uniform Truncated normal AR(1) coefficient in the field evolution equation.

m Normal Normal Mean of T.

s2 Inverse-gamma Inverse-gamma Partial sill of the spatial covariance matrix of the innovations

that drive the AR(1) process.

f Log-normal Nonstandard Inverse range of this spatial covariance matrix.

tI
2 Inverse-gamma Inverse-gamma Error variance of instrumental observations.

tP
2 Inverse-gamma Inverse-gamma Error variance of proxy observations.

b1 Normal Normal Scaling factor in the proxy observation equation.

b0 Normal Normal Additive constant in the proxy observation equation.

TABLE 2. Descriptions of other variables appearing frequently in the model equations.

Description

Wt Observations of a subset of Tt, subdivided into WI,t and WP,t, where the additional

subscript I or P indicates instrumental and proxy observations, respectively.

k Number of years for which there are (any) observations; time runs from 0,

the year prior to the first observations, to k.

NI,t and NP,t The number of instrumental and proxy observations at year t;

without the time index, these refer to the total number of locations for which

there are either instrumental or proxy observations.

MI [ �k

k51 NI,k Total number of instrumental observations; MP is the equivalent measure for the proxy data.

NA Total number of locations at which the field is estimated.

Q A vector consisting of the eight scalars that define the model.
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The instrumental observations at each year, WI,t, are

assumed to be noisy versions of the true temperatures at

the corresponding locations:

W
I,t

5 T
I,t

1 e
I,t

. (4)

The noise terms are assumed to be iid multivariate nor-

mal draws, eI,t ; N(0, tI
2I), where I is the identity matrix.

Note that the instrumental temperature observations

are subject to systematic errors (Brohan et al. 2006) that

are not dealt with here.

The proxy observations are assumed to have an un-

known, statistically linear relationship to the true tem-

peratures at the corresponding locations. This motivates

the regression equation:

W
P,t

5 b
1
T

P,t
1 b

o
1 1 e

P,t
. (5)

The noise terms are once more assumed to be iid normal

draws, eP,t ; N(0, tP
2I). A standard regression model

that seeks to predict the field values would generally

rewrite this equation to isolate TP,t on the left-hand side.

Such a formulation is equivalent to Eq. (5) in the sense

that the parameters of one model can be written in terms

of the parameters of the other. From the Bayesian per-

spective, however, it is simpler to describe the form of

the observations conditional on the unknown value of

TP,t, as this quantity appears in the expression for the

posterior of TP,t. In most cases the assumption of line-

arity will be a gross simplification of the relationship

between the proxies and the climate field of interest—

tree ring growth, for example, has a complicated and

highly nonlinear relationship with local climate variables

(e.g., Evans et al. 2006). This possibly poor assump-

tion is common to all regression-based reconstruction

approaches, and in some situations it may be useful to

transform the proxy data prior to the analysis to bring the

data into better agreement with the assumptions.

No nugget effect (e.g., Banerjee et al. 2004) is included

in the spatial covariance matrix S, as it would be re-

dundant given the observational error variances tI
2 and

tP
2. A nugget effect is usually included in a parameter-

ized spatial covariance matrix to inflate the covariance

at separation zero to account for variation, including

observational error, on length scales that cannot be re-

solved by the data (Banerjee et al. 2004), but the two t2

parameters already account for this. Inference on a nug-

get in the spatial covariance matrix would therefore be

ill conditioned, as multiple parameters would model the

same phenomenon.

We can represent the observation equations at each

year, taking into account the missing data structure, as

W
t
5

H
I,t

b
1
� H

P,t

 !
T

t
1

e
I,t

e
P,t

1 b
o
1

 !
, (6)

where HI,t and HP,t are selection matrices of zeros and

ones that pick out, at each year, the elements of Tt cor-

responding to locations for which there are observations.

The observations for any given year, conditional on the

true field vector and parameters, are multivariate normal:

W
t
jT

t
, Q ; N(H

t
T

t
1 B

t
, J

t
), (7)

where Q is a vector composed of the eight scalar pa-

rameters (Table 1) and the following notation has been

used to simplify the equations:

H
t
5

H
I,t

b
1
� H

P,t

 !
, B

t
5

H
I,t

H
P,t

 !
0

N
I

b
0
1

N
P

 !
,

J
t
5

t2
I � IN

I,t
0

0 t2
P � INP,t

0
@

1
A. (8)

We suppress TR, the third element of T, in expressions for

WtjTt, Q as the field is never observed at these locations.

3) PRIOR LEVEL AND DRAWING FROM THE

POSTERIOR

To close the analysis scheme, priors must be specified

for the eight scalar parameters and the climate field for

the first year in the analysis. Our approach is to use weakly

informative but proper prior distributions, and show that

the information provided by the data overwhelms the

prior. Where possible, we have used conditionally con-

jugate priors to facilitate computations (Table 1). Methods

FIG. 2. Log correlation as a function of separation for annual

mean temperature anomalies, using the global CRU dataset. Results

are shown for the 305 locations over land with at least 8 monthly

values a year for at least 100 years. Distances were grouped into

100-km bins, and the log of the median correlation in each bin is

plotted. Linear fits of log correlation as a function of separation

are to the entire dataset and to only those distance bins less than

3700 km. The fit to the entire dataset corresponds to an e-folding

length scale of 30 000 km, while that to distances less than 3700 km

corresponds to a length scale of 1800 km.
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of choosing the hyperparameters for the prior distribu-

tions are discussed in appendix A.

The probability of the data, given the true field values

and all parameters, can be factored to give

P(W
1
, . . . , W

k
jT

1
, . . . , T

k
, Q) 5 P

k

k51
P(W

k
jT

k
, Q).

(9)

Applying Bayes’ rule and rearranging results in

P(T
0
, . . . , T

k
, QjW

1
, . . . , W

k
) } P(T

0
) � P(Q)

�P
k

k51
P(W

k
jT

k
, t2

I , t2
P, m, b

0
, b

1
)P(T

k
jT

k�1
, s2, f, a).

(10)

Samples are drawn from this posterior using a Gibbs

sampler with a single Metropolis step (e.g., Gelman et al.

2003) used to update f (the inverse spatial range pa-

rameter). For all parameters other than f, the priors are

conditionally conjugate so samples can be drawn directly

from the full conditional posteriors. The forms and pa-

rameters of these full conditional posteriors, as well as

the details of the Metropolis step used to update f, are

described in appendix B.

To speed up the convergence of the Gibbs sampler,

the three variance parameters (s2, tI
2, tP

2) can be trun-

cated to exclude very large values. As the value of the

true underlying space–time field used to initialize the

sampler can disagree considerably with the information

provided by the data, the draws of the variance param-

eters can initially inflate to extremely high values. In our

experience, samples of the variance parameters even-

tually converge to more reasonable values, as the sam-

ples of the field come into better agreement with the

data, but this process can take many thousands of iter-

ations. If an upper bound is placed on the values of the

variance parameters, we find that convergence is much

faster, as the algorithm cannot initially account for all

discrepancy between the estimate of the true field and

the data by setting the variance parameters to high values.

This is equivalent to setting the priors to truncated

inverse-gamma distributions (see appendix A). Upper

bounds are set to be far in excess of any sample after the

algorithm has converged, so this approach does not ar-

tificially reduce the posterior uncertainty in these pa-

rameters. To further increase the speed of convergence,

we have found it useful to initially run the Gibbs sampler

in a reduced mode that only updates values of the un-

derlying field, and not the scalar parameters. This ensures

that the estimates of the field are in rough agreement with

the data and initial parameter values, so when the full

version of the algorithm is applied, the variance param-

eters more readily converge.

The speed of the algorithm can also be increased by

exploiting the fact that the matrix inverse needed to

sample from the conditional posterior of Tk is a function

only of the pattern of missing data for that year. As a

result, the number of matrices that must be inverted to

sample from each of the Tk in turn is given by the number

of unique patterns of missing data, which can be much

smaller than the number of years in the reconstruction.

While the computational demands of the Bayesian

approach are larger than for other comparable methods,

they are not prohibitive. Using an ordinary desktop com-

puter, each iteration of BARCAST for the experiments

discussed below takes about three seconds, so that pro-

ducing the 2200 draws used in each analysis requires

about 2 hours of computer time. In contrast, RegEM

with one ridge regression per missing observation takes

about 12 minutes to converge for each example.

c. Standardization of the proxy time series

If the proxy time series are standardized prior to the

analysis to have means of zero and standard deviations

of one, then b1 and b0 can be solved for in terms of the

other parameters to give

b
0

5�b
1
m and b

1
5

(1� t2
P)(1� a2)

s2

� �1/2

. (11)

These expressions follow from taking the expectation

and variance of both sides of Eq. (5), respectively, and

the fact that each element of T is AR(1) in time, with

variance s2/(1 2 a2) (e.g., Brockwell and Davis 1991).

The probability model could reasonably be simplified

in this specific case by setting b0 and b1 to these func-

tions of the other parameters. We introduce b0 and b1 as

distinct parameters for several reasons. First, the in-

clusion of b0 and b1 makes the model applicable in cases

where the proxy time series are not standardized. Second,

standardization involves estimating population parame-

ters from data. We anticipate that the estimates of the

population mean and standard deviation will be imper-

fect, and including these two parameters is one way of

accounting for and propagating the uncertainty in these

estimates. Third, the conditional posteriors are simpli-

fied by the introduction of these parameters, which fa-

cilitates the implementation of the Gibbs sampler used

to draw from the posterior. Fourth, we anticipate that the

linear relationship between the proxies and field assumed

by the model is imperfect. Inclusion of these two pa-

rameters, even in cases where the proxy time series have

been standardized, gives the model more flexibility to

account for imperfections in the assumed relationship.

In addition, we do not want the inferred mean field value

m to be corrupted by nonlinearities in the field–proxy
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relationship, which could happen if we fixed the b pa-

rameters as in Eq. (11). In short, the analysis model in-

cludes a mean and temporal standard deviation value for

the field, as well as a location and scale value that relates

the proxies to the field, and we expect there to be a re-

lationship between these quantities if the proxies have

been standardized and the linearity assumption is cor-

rect. Note that even if the proxies have been standard-

ized, the parameters b1 and b0 are not redundant, in the

sense that inference on these parameters is well condi-

tioned. This is in contrast to the situation discussed above

with regards to a nugget effect and the t2 parameters.

More generally, the manner in which the proxy time

series are standardized prior to the analysis can have sig-

nificant impacts on the results of reconstructions (Mann

et al. 2007; Lee et al. 2008; Smerdon and Kaplan 2007;

Smerdon et al. 2008). While this issue is not the focus

of the current work, the importance of the issue and a

possible treatment offered by BARCAST warrants a

few words. Broadly speaking, we distinguish two differ-

ent approaches to standardizing the proxy time series:

1) Each proxy time series is standardized by removing

the sample mean and scaling by the sample standard

deviation of that time series.

2) All proxies are standardized by removing a common

mean and scaling by a common standard deviation.

Similarly, we distinguish between two different types

of analysis that assume a local relationship between the

proxy time series and the instrumental or true field time

series:

1) Each true field or instrumental time series is regressed

onto the nearest standardized proxy time series,

with a different set of coefficients estimated for each

regression.

2) The true field or instrumental time series are regressed

onto the standardized proxy time series using a com-

mon set of coefficients.

If the first standardization approach is combined with

the first analysis approach, then the standardization is

irrelevant, in the sense that the reconstruction would be

the same if the proxies were not standardized. The un-

derlying assumption in this case is that each proxy is

linearly related to the local field value, with a different

relationship for each proxy time series. The analysis re-

quires the estimation of two regression parameters and an

error variance for each proxy time series [cf. Eq. (5)].

If the second standardization approach is combined

with the second analysis approach, then standardization

is likewise irrelevant. The underlying assumption is that

there is a linear relationship between each proxy and the

true local field value and that the relationship is the same

for all proxies. This analysis requires the estimation of

two regression parameters plus an error variance, which

are assumed to be the same for each proxy time series,

and is the approach taken when applying the version of

BARCAST described above [Eq. (5)].

Standardization influences the reconstruction when

the first standardization approach is combined with the

second analysis approach. The reconstruction then re-

quires the estimation of two parameters per record (stan-

dardization), plus two additional regression parameters

and an error variance common to all proxy records. The

logic behind this approach is that, if the standardized

proxy time series all have the same error variances, then

the linear relationship with the local true field should be

the same for each. This assumption, however, only holds

if all proxy time series are standardized using the pop-

ulation values of the time series means and standard

deviations (i.e., calculated from time series of infinite

length). As the standardization is conducted using sam-

ple estimates of the mean and standard deviation, rather

than the population quantities, even if all (standardized)

error variances are the same, the linear transformation

relating the proxies to the true field will be slightly dif-

ferent for each proxy time series. The error introduced

by the estimation of the standardizing coefficients for

each time series is not propagated through the analysis,

and experiments we have performed with surrogate data

show that the resulting credible intervals for field values

reconstructed using BARCAST tend to be too narrow.

We will return to this issue in section 4, which discusses

shortcomings and extensions.

d. Connections with other statistical techniques

Applied to one year of instrumental data, BARCAST

reduces to a Bayesian implementation of the standard

spatial technique of kriging (e.g., Banerjee et al. 2004),

which is used to predict a spatial field from observations

at a discrete set of locations. The value of BARCAST is

in the inclusion of multiple types of data, each having

a different relationship with the underlying field, and in

the treatment of the time dimension.

If all scalar parameters are specified a priori, then the

BARCAST estimates of the mean and variance of the

field at each year are equivalent to those from the Kalman

smoother (e.g., Kalman 1960; Wikle and Berliner 2006).

The advantages of BARCAST include the simultaneous

estimation of both the field and the scalar parameters

that define the model, and the resulting ensemble of draws

of the space time field that are consistent with both the

data and the modeling assumptions. BARCAST offers a

cohesive framework for estimating all unknowns, pro-

duces a richer end product, and results in uncertainty
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estimates for the field that take into account the uncer-

tainties in the scalar parameters.

3. Example: BARCAST

We demonstrate the functionality of BARCAST by

analyzing a number of simple example datasets based on

the Climate Research Unit’s surface temperature com-

pilation for North America (Brohan et al. 2006). The

CRU data are a gridded product with a resolution of

58 longitude by 58 latitude that features many locations

without data (Fig. 3). The temperature values at each

location are annual mean anomalies, in 8C, from the 1961–

90 mean. Each example dataset is formed by converting

a number of the longest annual mean CRU temperature

anomaly time series into pseudoproxies by specifying

the values of b1, b0, and tP
2 in Eq. (5). The values of the

regression coefficients are the same for each experiment,

b1 5 2 and b0 5 1, while the number of pseudoproxies

and the value of tP
2 vary between the experiments

(Tables 3 and 4). We consider values of tP
2 that corre-

spond to proxy signal-to-noise ratios (SNR), in terms of

standard deviations, of 1, ½, and 1/3 and use 30, 20, or 10

pseudoproxy time series, for a total of nine experiments.

For ease of reference, the experiment with the largest

SNR and greatest number of pseudoproxy time series

will be referred to as the ‘‘easy’’ experiment, while those

with the middle and smallest value of each quantity will

be referred to as the ‘‘medium’’ and ‘‘hard’’ experiments,

respectively. The SNR values are in line with those used

in other assessments of reconstruction techniques (e.g.,

von Storch et al. 2009; Lee et al. 2008; Mann et al. 2007).

In each experiment, the CRU values after 1940 (the

calibration period) form the instrumental dataset, while

the CRU values available in the 1850–1940 interval are

withheld from the analysis and used to test the recon-

structions (Fig. 3). The goal of each analysis is to esti-

mate the temperature field at all nodes of the grid, even

those for which no observations are available, at all

years in the 1850–2007 interval. As BARCAST includes

a spatial model, it is possible to estimate the tempera-

tures at an arbitrarily fine spatial resolution. There seems

little point, however, in making estimates at a scale finer

than that of the original data.

We also analyze each of the example datasets using the

RegEM algorithm, with one ridge regression per missing

value providing the regularization, and the variance in-

flation factor set to one (Schneider 2001); Part II will

FIG. 3. (top) Locations of the data time series used to reconstruct North American surface tempera-

tures. The squares indicate the locations of the CRU time series, while symbols inside the squares indicate

the locations of the longer CRU time series that are used in the construction of pseudoproxies in the nine

experiments. Solid black marks the locations of the ten longest CRU time series; the x’s mark the 11th

through 20th and the plus signs the 21st through 30th longest time series. The small black dots mark the

remainder of the grid locations where temperatures are estimated. (bottom) The number of pseudo-

proxies and instrumental records available at each year for the medium dataset; the CRU values before

1941 are withheld from the analysis and are used to test the reconstructions.
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provide a more in-depth comparison of BARCAST and

RegEM. We do not standardize the pseudoproxy or in-

strumental datasets prior to the analysis with either

method, and the effects of various standardization pro-

cedures on BARCAST and RegEM will not be explored

in this work.

The focus of this section will be the output produced

by applying BARCAST to the medium dataset (Tables

3 and 4), while results from the other experiments are

included to show that the conclusions are robust to the

particulars of the experiments. The basic result of ap-

plying BARCAST to each dataset is an ensemble of

posterior draws of the space–time field and scalar param-

eters, consistent with the data and the model assump-

tions; the results below are based on 2000 such draws.

These results do not represent a complete vetting of

BARCAST, but rather demonstrate the utility of the

new algorithm in a variety of reasonable scenarios. Fu-

ture work with climate model data and real proxy data

will be required to fully assess the strengths and weak-

nesses of this new approach.

a. Fields and time series

We show the BARCAST and RegEM field estimates

for two representative years of the medium dataset (Figs. 4

and 5, respectively): 1888, for which only pseudoproxy

observations are available, and 1988, for which both

types of observation are available. The BARCAST

field estimate at each location is the median of the

2000 draws from the posterior, while the corresponding

uncertainty is the distance between the 5th and 95th

percentiles of the posterior draws. For both years,

BARCAST identifies the temperature estimates in re-

gions far from any available data as the most uncertain.

For 1888, the BARCAST field estimate decays smoothly

toward the mean value (and the uncertainty increases)

as one moves away from the two concentrated areas of

observations—this is a result of the assumed covari-

ance structure. There is more structure and less un-

certainty in the BARCAST field estimate for 1988 than

for 1888, as there are more observations to constrain

the estimates.

TABLE 3. Ninety percent credible intervals for the scalar parameters inferred from BARCAST for each of the nine experiments. In each

experiment, b1 is set to 2 and b0 is set to 1, while the values of tP
2 used to generate the pseudoproxies are listed in the second column. For

these three parameters, credible intervals that do not contain the specified values are shown in italics. The experiments are arranged in the

same order as in Table 4, which lists the number of pseudoproxy time series and the SNR for each experiment.

Name tP
2 a m s2 f 3 10 000 tI

2 3 100 tP
2 b1 b0

Easy 2.75 (0.42, 0.47) (20.17, 0.10) (0.67, 0.78) (3.03, 3.60) (1.15, 1.56) (2.66, 2.89) (2.05, 2.21) (0.92, 1.05)

10.0 (0.39, 0.43) (20.13, 0.13) (0.67, 0.80) (2.97, 3.53) (1.13, 1.52) (10.7, 11.5) (1.85, 2.17) (0.77, 1.02)

21.6 (0.39, 0.43) (20.18, 0.12) (0.69, 0.88) (2.62, 3.46) (1.15, 1.52) (23.5, 25.3) (1.72, 2.21) (0.81, 1.15)

2.75 (0.42, 0.46) (20.12, 0.14) (0.64, 0.78) (3.03, 3.79) (1.11, 1.53) (2.38, 2.65) (2.11, 2.30) (0.83, 0.98)

Medium 10.0 (0.39, 0.43) (20.14, 0.15) (0.71, 0.86) (2.71, 3.34) (1.16, 1.51) (10.0, 11.0) (1.82, 2.21) (0.79, 1.07)

21.6 (0.39, 0.43) (20.15, 0.17) (0.76, 0.92) (2.52, 3.11) (1.18, 1.56) (22.2, 24.3) (1.41, 1.94) (0.83, 1.24)

2.75 (0.40, 0.45) (20.20, 0.06) (0.67, 0.85) (2.73, 3.50) (1.18, 1.57) (2.39, 2.79) (1.90, 2.17) (0.99, 1.19)

10.0 (0.38, 0.43) (20.08, 0.21) (0.69, 0.91) (2.53, 3.41) (1.20, 1.56) (9.07, 10.3) (1.67, 2.16) (0.55, 0.91)

Hard 21.6 (0.39, 0.43) (20.12, 0.20) (0.70, 0.94) (2.45, 3.32) (1.17, 1.60) (19.9, 22.5) (1.51, 2.16) (0.42, 0.94)

TABLE 4. Descriptions of the three experiments used to demonstrate BARCAST and compare it to RegEM, along with statistics used to

test the reconstructions. ‘‘Number’’ refers to the number of pseudoproxy time series used in each experiment, while SNR gives the signal-

to-noise ratio of the pseudoproxies in terms of standard deviations. ‘‘Average r2’’ and ‘‘average CE’’ refer to the means of the r2 and CE

values, respectively, calculated for the withheld CRU time series in each experiment (cf. Fig. 11), while ‘‘coverage rate’’ refers to the

fraction of the withheld CRU values covered by the 90% credible (BARCAST) or confidence (RegEM) intervals. The rightmost column

shows the correlation between the spatial mean time series estimated from BARCAST and RegEM during the 1850–1940 testing interval.

Average r 2 Average CE Coverage Rate Correlation

Name Number SNR tP
2 BARCAST RegEM BARCAST RegEM BARCAST RegEM (1850–1940)

Easy 30 1 2.75 0.47 0.42 0.26 0.09 0.91 0.76 0.97

30 1/2 10.0 0.29 0.22 0.00 20.21 0.89 0.78 0.90

30 1/3 21.6 0.25 0.17 20.08 20.27 0.90 0.76 0.65

20 1 2.75 0.38 0.34 0.10 20.02 0.89 0.75 0.93

Medium 20 1/2 10.0 0.27 0.21 20.07 20.25 0.89 0.78 0.84

20 1/3 21.6 0.17 0.14 20.28 20.44 0.90 0.78 0.61

10 1 2.75 0.29 0.27 20.01 20.04 0.90 0.78 0.87

10 1/2 10.0 0.20 0.14 20.27 20.34 0.89 0.76 0.76

Hard 10 1/3 21.6 0.14 0.07 20.37 20.44 0.90 0.78 0.64
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RegEM as currently implemented is designed to infer

missing values in an incomplete dataset (Schneider 2001),

and so does not impute the field at locations where there

are no observations (Fig. 5; see Part II for a discussion of

this issue). The widths of the 90% uncertainty intervals

for the estimates of the field at each location are the

standard error estimates provided by RegEM, multiplied

by 2.71 (the distance between the 5th and 95th percen-

tiles of the standard normal distribution). For 1888, the

RegEM uncertainty tends to grow as the distance from

the proxy observations increases, which is consistent with

the use of an exponentially decaying spatial covariance

structure in BARCAST. There are instrumental obser-

vations for 1988 at each location where there are any

instrumental observations. As RegEM does not consider

errors in the instrumental observations (see Part II), the

RegEM temperature estimate at each location for 1988

is simply the original CRU value, and there is no un-

certainty in these estimates (Fig. 5). The 1988 CRU tem-

perature field is visually similar to that estimated using

BARCAST, which is dominated by the instrumental

observations, whereas in 1888 the features estimated by

RegEM have smaller amplitudes than those estimated

by BARCAST.

The posterior draws from BARCAST provide esti-

mates, with uncertainty, of the temperature time series

at each location (Fig. 6). At locations and times where

there are instrumental observations, the reconstructed

temperatures are in close (but not perfect) agreement

with the instrumental values. At these times and loca-

tions, the uncertainty is very small—according to the

algorithm, the instrumental observations are excellent

estimates of the true field. Going back in time, the un-

certainty at these locations increases rapidly as the in-

strumental observations end in 1941. Prior to 1941, the

uncertainty is largest at locations and times for which no

proxy observations are available, and there are notice-

able deviations between the estimates from BARCAST

and the withheld CRU values. The uncertainty in the

estimation of the field values, calculated from multiple

draws from the joint posterior, accounts for the uncer-

tainty in all other parameters of the model, but does not

account for errors in the structure of the model. Our re-

sults are conditional on the assumptions we have made

FIG. 4. (left) BARCAST estimates of the temperature anomaly field in North America for two different years, and (right) the corre-

sponding uncertainty, for the medium experiment. The estimates are the medians of the posterior draws, and the uncertainties the widths

of the 90% credible intervals. In the uncertainty panels, gray dots, green triangles, and purple triangles indicate locations where there are,

respectively, instrumental, proxy, or both types of observation available for that year.
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about the covariance matrix, AR(1) temporal evolution,

and observation equations. The consistency between the

calculated uncertainties and the deviations between the

reconstructed and withheld time series will be addressed

below.

Estimates of the time series of spatial means, both

raw and smoothed in time, can be calculated from the

posterior draws of the field produced by BARCAST

(Fig. 7), where the weighting of each grid box is pro-

portional to the area of the land it contains. To estimate

the smoothed time series of spatial means and the asso-

ciated uncertainty, we smooth the mean time series cal-

culated from each posterior draw from BARCAST, and

then take, at each year, the 5th, 50th, and 95th percentiles

of the resulting distribution. In general, the posterior dis-

tribution of any function of the space–time field can be

estimated simply by calculating the quantity for each

draw from the posterior distribution of the space–time

field. We also show the corresponding results from ana-

lyzing the medium dataset with RegEM (Fig. 7). In

the case of RegEM, calculating the uncertainty in the

smoothed time series is a nontrivial task. We are not

aware that these difficulties have been addressed else-

where, and we do not attempt to calculate a statistically

appropriate confidence interval estimate. As a rough

indication of the uncertainty, we show the smoothed

uncertainty envelope from the raw time series, which is

biased wide (Fig. 7). For years when all instrumental

observations are available, there is no reported uncer-

tainty in the RegEM estimate of the spatial mean, as no

missing values need to be imputed. During the 1940–

2007 calibration interval, the RegEM and BARCAST

estimates are in close agreement save for the last few

years, which feature an increasing number of missing in-

strumental observations. Prior to 1940, the shapes of the

average time series estimated using each method are

similar—the correlation between the two is 0.84—but

BARCAST infers a larger amplitude for the variations,

which is most apparent in the smoothed time series

(Fig. 7). As evidenced by the correlations between the

block average time series, the agreement between the two

analysis methods is greatest for the easy experiment and

generally decreases as the SNR and number of proxy time

series decrease (Table 4).

FIG. 5. As in Fig. 4, but using RegEM to estimate the field and uncertainties, with one ridge regression per missing value providing

the regularization. In all panels, the green shading indicates locations where RegEM does not predict the field because there are no

instrumental time series. The color scales for the estimates of the field values and the associated uncertainties are the same as those in

Fig. 4.
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b. Scalar parameters and convergence for BARCAST

Histograms of the priors and posteriors of the eight

scalar parameters inferred by BARCAST in each of the

named experiments show that the priors have virtually no

influence on the analysis—the posteriors are dominated

by the information supplied by the data (Fig. 8). The

posterior distributions of the four parameters that define

the space–time structure of the field (a, m, s2, and f) vary

somewhat between the experiments (Fig. 8 and Table 3)

but display considerable overlap. The three experiments

with the lowest SNR value generally estimate higher

values for a. With smaller proxy observational errors in

the longer pseudoproxy time series, BARCAST infers

a greater degree of temporal autocorrelation for the

underlying field. The posterior distributions for s2 and

f shift toward higher and lower values, respectively, as

both the SNR and the number of proxy records decrease,

while the posterior distributions of m are largely un-

changed between experiments (Fig. 8 and Table 3).

BARCAST infers a spatial correlation length scale,

calculated as 1/f, of about 3300 km, which is larger than

the 1700 and 1500 km estimated by Hansen and Lebedeff

(1987) and Mann and Park (1993), respectively. The es-

timates from those studies are in line with the 1800 km

derived from the global CRU dataset (Fig. 2). Note that

our domain contains no ocean, which would introduce

sharp boundaries, and that the length-scale estimate is

derived largely from data after 1940. The secular increase

in surface temperatures since that time could contribute

to the estimates of the length scale being larger than in

other studies.

The posterior draws of f and s2 are negatively cor-

related (r 5 20.93; Fig. 9). Given the spatial covariance

form [Eq. (2)] and time series at only two locations,

a curve in (f, s2) space results in a modeled covariance

FIG. 6. BARCAST estimates of temperature anomaly (in 8C) time series at selected locations, for the medium experiment. The light

gray fill shows the 90% credible intervals from BARCAST, the medium gray lines the medians from BARCAST, and the black lines the

unaltered CRU values, when and where they are available. Locations are given on the y axes as longitude–latitude pairs. (a),(b) Locations

where there are CRU observations only; (c),(d) locations where there are both CRU observations and pseudoproxy observations; (e),(f)

locations without data. In (a)–(d), the CE and correlation statistics are shown for the testing interval, the time prior to 1941 during which

the CRU observations are available but withheld from the analysis.
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that exactly matches the sample covariance between the

two time series. With time series at additional locations,

the match cannot be perfect, but there is still a trade-off

between the two parameters, which results in the pos-

terior draws being correlated. This raises the concern

that inference on these two parameters will be ill de-

fined, in the sense that the posterior draws will converge

toward this curve and then will wander in its vicinity

over significant ranges of the two parameters. In practice,

however, we find that the posterior distributions of these

parameters are well constrained, having high probability

over a narrow range of each (Figs. 8 and 9).

The posterior estimates of the instrumental observa-

tional error variance tI
2 are virtually identical for all

experiments (Fig. 8 and Table 3), which is to be expected

as each experiment involves the same set of instrumental

observations.

The three parameters that link the pseudoproxies to

the true values ( b1, b0, and tP
2) are specified in the con-

struction of the pseudoproxy time series, and these true

values can be compared to the posterior estimates from

BARCAST (Fig. 8 and Table 3). For each of these three

parameters, the posterior credible intervals are narrowest

for the easy experiment and become wider as the SNR

and the number of proxies decrease, indicating that with

more and higher quality data BARCAST can better

constrain these parameters. We estimate a 90% credible

interval for each of these three parameters in each of the

nine experiments, and only 16 of these 27 intervals contain

the true value of the parameter (Table 3). While fewer

than 90% of the credible intervals contain the specified

values—an indication that the BARCAST model as-

sumptions are imperfect—the posterior distributions are

generally peaked within 615% of the values used to

construct the data. Note that the estimates of tP
2 should

be biased high by b1
2tI

2 relative to the specified values

(Table 3) as the pseudoproxies are constructed by add-

ing noise to instrumental observations, rather than the

true field values. The value of b1
2tI

2 is, however, at least

two orders of magnitude smaller than the values of tP
2, so

this bias cannot account for the low coverage rate of the

90% intervals.

We are reassured that even in the case of the hard

experiment, which involves 10 pseudoproxies with signal-

to-noise ratios of 1/3, and 65 years of overlap with the

CRU data, the posterior distributions from BARCAST

for the parameters linking the proxy observations to the

field are narrow relative to the priors. As the overlap be-

tween the two types of data will in general be longer in

real applications than in these experiments, the param-

eters linking the proxies to the underlying field should be

well constrained in many practical circumstances.

For fixed values of the SNR, the 90% credible inter-

vals for tP
2 generally become narrower and shift toward

higher values as the number of proxy records increases,

indicating that, with more proxy time series, BARCAST

ascribes more of the variance in these time series to

observational noise (Table 3). For a fixed number of

FIG. 7. (a) Reconstructed spatial average temperature anomaly (in 8C) for North America, with uncertainty, for the medium experi-

ment. The thick black line and light gray fill are, respectively, the median and 90% credible intervals from BARCAST. The medium and

thin black lines are, respectively, the mean and 90% uncertainty estimated using RegEM, where one ridge regression per missing value

provides the regularization. The black triangles mark volcanic eruptions with a volcanic explosivity index of at least 5 (Simkin and Siebert

1994). (b) Estimates, with uncertainties, of the time series of the spatial mean smoothed by a 9-point Hanning window. In the case of

RegEM, the uncertainty bounds are simply those from (a) smoothed by a 9-point Hanning window.
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proxy records, the 90% credible intervals for b1 become

narrower and shift toward higher values as the SNR

increases, indicating that with smaller observational er-

rors in the proxy time series, BARCAST infers a stronger

relationship between the proxies and the underlying field.

The intervals for b1 are less sensitive to changes in the

number of proxy records for a fixed value of the SNR

(Table 3). The widths of the 90% credible intervals for

b0 increase as both the SNR and the number of proxy

records decrease, but there is no clear pattern in the

locations of these intervals.

In each experiment with BARCAST, the first 200 it-

erations of the Gibbs sampler are withheld from the

posterior analysis, as this number appears sufficient to

allow the algorithm to converge to the correct area of

probability space (Fig. 9). We find that, in these examples

and in practical applications, there is generally sufficient

data that the algorithm readily and clearly converges to

the correct area of probability space, provided that the

values of the variance parameters are not initially allowed

to inflate to very high values. For a general discussion

concerning the convergence of Markov chain–based sam-

pling algorithms, see Gelman et al. (2003).

c. Residual quantities

To check if the dataset is in agreement with the model

assumed by BARCAST, or if more complexity is needed

to account for structures in the data, we can examine

several residual quantities (Fig. 10). This is akin to check-

ing that the residuals from a simple linear regression

are independent and normally distributed. From the

observation equations [Eqs. (4) and (5)], we estimate the

time series of instrumental and proxy observational er-

rors for each posterior draw, leading to both point esti-

mates of these quantities and estimates of the associated

uncertainties. By assumption, the observational error

sequences should be iid normal draws, with common

variance for all proxy error series and all instrumental

error series, respectively. If one proxy record was biased

in some way, or displayed considerably larger observa-

tional error than the others, this residual analysis should

show that the observational error estimates for that proxy

time series are inconsistent with those for the other prox-

ies. As the pseudoproxies currently under analysis were

constructed to be consistent with the modeling assump-

tions [Eq. (5)], such a feature is not observed (Fig. 10).

From the field evolution equation [Eq. (1)], we esti-

mate the multivariate time series of innovations driving

the AR(1) process for each posterior draw (Fig. 10). The

uncertainty in the estimates of the innovations depends

strongly on the amount of available data, being smallest

at times and places where instrumental observations are

available, and largest where no observations are avail-

able. By assumption, the innovation vectors for each year

are iid samples from a multivariate normal distribution

with mean zero and exponentially decaying spatial co-

variance. If the simple AR(1) model cannot account for

the structures in the datasets, we would expect to see

patterns arising in the innovation time series. For ex-

ample, if the innovations for years immediately follow-

ing major volcanic eruptions were uniformly negative,

we would conclude that volcanic forcing violates the

FIG. 8. Posterior histograms of the eight scalar parameters estimated by BARCAST (see Table 1), for each of the three named ex-

periments. Priors are shown in thin dotted gray but are in most cases not discernible from zero. In the last three panels (tP
2, b1 and b0), the

values used to construct the pseudoproxies are indicated with vertical dashed lines.
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AR(1) assumption [Eq. (1)]. Similarly, if the twentieth-

century warming is incompatible with the AR(1) as-

sumption, then more of the innovations over this interval

should be positive than would be expected by chance

alone. While this phenomenon is not observed in these

experiments, we find in more realistic applications that

more innovations are positive over the twentieth cen-

tury than would be expected by chance alone (Tingley

2009).

The field estimates produced by BARCAST are influ-

enced by both the model assumptions and the available

data. The assumption of a stationary AR(1) process is

almost certainly a simplification, and the system’s re-

sponse to volcanism and the increases in atmospheric

greenhouse gas concentrations over the twentieth cen-

tury are obvious violations of this assumption. In realistic

applications, then, we expect that the modeling assump-

tions will not be strictly met by the data under analysis,

and signatures of volcanism or twentieth-century warm-

ing in the innovations can be interpreted in two ways: first,

as indicating that the model assumptions are not met by

the data and thus the model should be modified (see

below); second, as indicating that the field estimates

are capturing important and known features of the sys-

tem that violate the assumption of stationarity. In other

words, signatures of nonstationarity in the residuals in-

dicate that the field estimates produced by BARCAST

are dominated by the data, rather than the model as-

sumptions, and are robust to departures from these

modeling assumptions.

d. Assessing the reconstructions

To assess the agreement between each reconstruction

and the withheld CRU values we utilize both the r2 co-

efficient of determination (e.g., Zar 1999) and the co-

efficient of efficiency (CE) statistic (see, e.g., Rutherford

et al. 2005 and references therein):
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If each estimate ŷ
i

is set to the mean y
i

of that variable

over the testing interval, then the CE is zero. A positive

value indicates that the reconstruction contains infor-

mation about the variation of the true values about the

mean. If the actual and reconstructed time series have

similar shapes, then r2 will be large, but if the amplitudes

of the features or the mean values are different, then the

CE will be small or negative.

The use of the r2 and CE statistics comes with the

caveat that we are comparing the reconstructed values to

the withheld CRU data, despite the fact that BARCAST

explicitly includes a measurement error for the CRU

observations. This error, however, is extremely small, as

evidenced by the posterior distribution of tP
2 and the

excellent agreement between the CRU and reconstructed

values at times and places where CRU observations are

used in the reconstruction (Figs. 6 and 8). To provide

intuition with regards to these statistics, we indicate the

values for the representative time series discussed above

for the BARCAST analysis of the medium dataset (Fig. 6).

For each of the named experiments (Table 4), and for

analysis with both BARCAST and RegEM, we plot

both the r2 and the CE statistics as a function of location

(Fig. 11). These maps are incomplete, as the statistics are

only calculated at those locations where there are at

least 10 years of CRU observations during the 1850–1940

testing interval. Both the CE and r2 values are strongly

influenced by the number of nearby time series of ob-

servations. In the case of BARCAST, this is consistent

with the exponential form specified for the spatial co-

variance, which anticipated predictions being more pre-

cise at locations close to observations. The similar spatial

patterns seen in the maps of the CE and r2 statistics from

RegEM and BARCAST supports the use of the simple

spatial covariance form specified for BARCAST.

As expected, regardless of the analysis technique

(BARCAST or RegEM) or statistic (r2, CE), the agree-

ment between the reconstruction and the withheld values

is greatest for the easy experiment, decreases as both the

SNR and the number of proxy records decreases, and is

FIG. 9. Scatterplot of the draws of f and s2 from the medium

experiment, differentiating between the first 200 and the sub-

sequent 2000, which are used in the analysis. Also shown is a fit to

the later 2000 points based on the relationship between f and s2 in

Eq. (2).
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smallest for the hard experiment (Table 4 and Fig. 11).

In addition, the CE values are uniformly smaller than

the corresponding r2 values, indicating that both algo-

rithms are better at inferring the correct shape of the

variability than they are at inferring the correct ampli-

tude or mean value (see Christiansen et al. 2009 for a

general discussion of this issue). For each experiment,

the average r2 and CE values for BARCAST are higher

than those for RegEM, indicating that BARCAST pro-

duces better estimates of both the shape and the ampli-

tude of the withheld CRU time series (Table 4; see also

Fig. 7) in these particular experiments.

Finally, both BARCAST and RegEM produce un-

certainty intervals associated with the estimates of the

withheld CRU surface temperature observations, and

we calculate the fraction of the withheld CRU values

that fall within the 90% uncertainty intervals for each

experiment and analysis method (Table 4). Ideally, 90%

of the withheld values should fall within the 90% un-

certainty intervals, while the extents to which the cov-

erage rates differ from 90% are indications of errors in

the estimated confidence or credible intervals. In each

experiment, the 90% credible intervals produced using

BARCAST cover nearly 90% of the withheld values,

but those produced using RegEM cover only about 77%

of the withheld values, indicating that the BARCAST

uncertainty intervals have the correct coverage rate,

while those from RegEM are too narrow. The coverage

rates do not appear sensitive to either the SNR or the

number of proxy records. In the case of BARCAST, the

credible intervals for missing instrumental values are

constructed by adding white noise to each draw of the

field, with variance given by the corresponding draw of

tI
2, and then taking the 5th and 95th percentiles of the

resulting distributions. The distinction between un-

certainty intervals for missing instrumental observations

FIG. 10. Estimates of the observational error sequences and innovation time series at selected locations, for the

medium experiment. The light gray fill shows the 90% credible intervals from BARCAST, and the black lines the

medians. Locations are given on the y axes as latitude–longitude pairs. (a),(b) Instrumental observational error

sequences (in 8C) at two locations; (c),(d) proxy observational error sequences (in proxy units) at two locations;

(e)–(g) innovation time series (in 8C) at locations where there are, respectively, only instrumental observations, both

instrumental and proxy observations, and no observations. The black triangles in (e)–(g) mark volcanic eruptions

with a volcanic explosivity index of at least 5 (Simkin and Siebert 1994).
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and those for the underlying true values will be discussed

in Part II.

The RegEM algorithm requires the specification of a

variance inflation factor (Schneider 2001), set to a default

of one in these experiments. Given the low coverage rate

of the 90% confidence intervals, the RegEM variance

inflation factor apparently ought to be set to a higher

value, where that value would be determined by repeated

numerical experiments (Schneider 2001). We leave the

variance inflation factor at one to stress the need to ac-

curately estimate this additional parameter when using

RegEM. This and related points are addressed in more

detail in Part II.

4. Shortcomings and extensions

For the sake of simplicity, we have described and

demonstrated the simplest form of BARCAST that can

be directly applied to actual paleoclimate problems. This

basic analysis scheme can be extended and modified in

a number of potentially useful ways, and doing so will

involve modifying the conditional posteriors derived in

appendix B. There are also shortcomings and limita-

tions to BARCAST, some of which are particular to the

Bayesian approach to reconstructing climate fields and

some of which apply more broadly. We review a number

of existing shortcoming and possible extensions below.

a. Shortcomings

1) COMPUTATIONAL REQUIREMENTS

One of the drawbacks of the Bayesian method is that

it is computationally intensive. A minimum of several

hundred draws from the posterior are necessary (e.g.,

Gelman et al. 2003), and for each posterior draw and

each unique pattern of missing data, a matrix with dimen-

sion given by the number of spatial locations used in the

analysis must be inverted. Although BARCAST is slower

than RegEM, the required computation is small relative

to many earth science problems, comparable to running

a coarse-resolution general circulation model. Parallel

processing can be exploited in several ways to increase

the speed of the analysis. It is possible, for example, to run

one chain to convergence, and then use the output from

this chain to initialize a number of other chains. Alter-

natively, large-scale reconstructions can be performed

region by region, retaining all available observations that

lie within a certain number of e-folding length scales,

FIG. 11. Measures of skill for the three named experiments, using both BARCAST and RegEM to perform the reconstructions. At each

location where there are at least 10 CRU observations in the pre-1941 testing interval, both the r2 and CE between the reconstructed time

series and the CRU time series are plotted. To ensure a consistent color scheme, where warm colors indicate positive values of the

statistics, all CE values less than or equal to 21 are plotted using the same color. Locations of the pseudoproxy time series used in each

experiment are indicated by green triangles in the leftmost column of figures.
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given by 1/f, of the boundaries of each region (cf. Cook

et al. 1999).

2) TEMPORAL VARIANCE

Climate reconstruction approaches based on least

squares regression, which minimize the error sum of

squares, result in reconstructions (of a field or a spatial

average) with lower temporal variance over the proxy

interval than over the calibration interval (NRC 2006).

This is a feature of all ordinary least squares regression

models, including BARCAST, and is not necessarily a

flaw. The regression equation predicts the mean value of

the response, given the predictors, so does not take into

account the variability of the response about that mean

value. Method-of-moment–type approaches avoid this

shortcoming by scaling the mean and standard deviation

of the proxy part of the reconstruction to match those of

the instrumental over the calibration interval (NRC 2006).

Such approaches, however, do not minimize the error sum

of squares and so are not optimal from the standpoint of

minimizing prediction error (e.g., Casella and Berger

2002). In addition to providing a best estimate of the

field evolution, and an estimate of the associated un-

certainty, BARCAST results in an ensemble of draws of

the space–time field, each consistent with the data and

the model assumption, that have, on average, the correct

temporal variance; this issue is investigated in Part II.

3) DISTRIBUTION OF ERRORS

Both the instrumental and proxy observation equations

[Eqs. (4) and (5)] assume that the errors are iid normal

draws, which is unlikely to be true in practice. In partic-

ular, errors in the proxies could well be correlated in both

space and time. A number of studies have explored

the sensitivity of various climate reconstruction tech-

niques to the type of proxy noise (e.g., von Storch et al.

2009), and similar exercises will need to be conducted

for BARCAST.

4) STANDARDIZATION

The standardization applied to the data prior to anal-

ysis, which can be thought of as the estimation of three

additional parameters for either the proxy dataset as

a whole, or for each proxy time series, can affect the skill

of field reconstructions (e.g., NRC 2006; Mann et al. 2007;

Smerdon and Kaplan 2007; Lee et al. 2008; Smerdon et al.

2008). In general, the uncertainty introduced by the error

in estimating the mean and standard deviation of the

proxy dataset, or each time series, is not propagated

through the analysis, leading to confidence intervals

that are too narrow. This issue is discussed in more detail

below.

b. Extensions

1) MULTIPLE OBSERVATION EQUATIONS

The current model assumes that all proxy records share

the same observation equation [Eq. (5)]. To account for

differences between proxy types, say tree ring width and

tree ring density time series, a separate observation

equation can be specified for each (see Tingley 2009 for

an example application). This introduces a triplet of

parameters (b0, b1, tP
2) for each proxy type, for which

we must specify priors and derive conditional posteriors.

2) PROXIES THAT AVERAGE OVER TIME OR SPACE

Some climate proxies, such as pollen assemblages, con-

tain information about the field integrated or averaged

over time and/or space, and the proxy observation equa-

tion can be generalized to reflect these relationships. As

a simple example, suppose that a proxy observation is

assumed to have a statistically linear relationship with

the local mean temperature over the previous two years

(Fig. 1). We can then specify the observation equation

for this proxy type as

W
P,t

5 �
1

k50
b

k11
T

P,t�k
1 b

o
1 1 e

P,t
. (13)

The resolution of the proxy time series—the spacing in

time between subsequent data points—is not an issue, as

BARCAST is constructed to handle incomplete data-

sets. The observation equation can likewise be modified

to account for a proxy that reflects the underlying field

averaged over some spatial domain.

3) GENERALIZING THE SPATIAL COVARIANCE

STRUCTURE

The exponential covariance function is a special case

of the more general Matérn class of covariance functions,

with the smoothness parameter set to 0.5 (Banerjee et al.

2004). Realizations from such a process are continuous,

but not differentiable. If this is insufficiently smooth to

accurately model the underlying field, the exponential

covariance can be replaced with a Matérn covariance

function with a larger smoothness parameter.

We have assumed an isotropic covariance function for

the spatial field. In the context of modeling climate fields,

it might be reasonable to assume that covariance decays

at different rates in the zonal and meridional directions,

which leads to a more generalized covariance function,

S
ij

5 s2 exp(�f
lon
jx

i
� x

j
j�f

lat
jy

i
� y

j
j), (14)

where jxi 2 xjj and jyi 2 yjj are the separations in the

zonal and meridional directions, respectively, of the ith

and jth locations. Similar modifications can be used to

2776 J O U R N A L O F C L I M A T E VOLUME 23



describe different rates of decay between locations over

land, locations over sea, and locations that straddle a

coastline.

4) INCORPORATING CLIMATE FORCINGS

Reconstructions of such climate forcings as volcanism,

solar variability, and greenhouse gas concentrations can

be added into the model, at the process level, by replacing

the temperature evolution equation [Eq. (1)] with

T
t
� m1� a

1
V

t
� a

2
S

t
� a

3
G

t

5 a(T
t�1
� m1� a

1
V

t�1
� a

2
S

t�1
� a

3
G

t�1
)1 �

t
,

(15)

where V, S, and G are the time series of volcanic, solar,

and greenhouse gas forcings, respectively. If these forcings

are important, then a formulation that excludes them will

result in posterior estimates of the innovation time series

that are not iid normal draws. Including these forcings

should reduce or eliminate any structures in the innova-

tions. In addition, posterior estimates of the ai provide

estimates of the sensitivity of the climate system to

changes in the forcings. If we include these forcings, as-

sume that the instrumental observational error variance

is zero, and consider co-located instrumental and proxy

composite time series, then the modeling assumptions

reduce to those assumed by Lee et al. (2008). The re-

construction method employed by Lee et al. (2008) uses

a Kalman filter to estimate the instrumental composite

when only the proxy composite is available and makes

use of a separate analysis to estimate the various param-

eters that specify the model.

5) PREDICTIONS

As BARCAST includes a temporal model, it is pos-

sible to forecast the field for years after the last, or be-

fore the first, observations. The skill of such a forecast is

set by the size of a, which gives the lag-one correlation.

In the examples presented above, a is about 0.4, which

corresponds to an r2 of about 0.16 for a one-step-ahead

prediction, indicating that the potential for forecasting is

weak. Including time series of the forcing into the anal-

ysis would increase the forecasting skill as the mean value

to which the forecast regresses is then time dependent.

6) HIERARCHY OF REGRESSION COEFFICIENTS

As discussed earlier, the standardization applied to

the proxy time series prior to the analysis can influence

the results of reconstructions.

If each proxy time series of a particular type is indi-

vidually standardized to have mean zero and standard

deviation one, the regression coefficients that locally

link the true field time series to these proxy time series

should be similar, but not identical. An intermediate

between estimating a common set of regression coeffi-

cients for each proxy time series of a particular type, or

a different set for each, can be constructed within the

Bayesian framework by assuming that the regression

parameters and observational error variances for each

proxy time series are, respectively, draws from a common

distribution. Building a hierarchy on these parameters

results in estimates of the regression parameters that are

weighted means of those resulting from separate esti-

mates of the coefficients for each proxy time series and

the estimate of one common set of coefficients for all

proxy time series (e.g., Gelman et al. 2003). This ap-

proach is akin to including the standardization step di-

rectly into the analysis and thus facilitates the propagation

of uncertainties.

5. Conclusions

We present a new methodological framework for re-

constructing the temporal evolution of climate fields

from incomplete data. The Bayesian scheme provides

a rich output, including the full covariance uncertainty

structure associated with the estimates of the true field

values through time and the scalars that parameterize

the model. The posterior draws of the space–time field

can be used to estimate the posterior distribution of any

function of the field, from simple measures like the

spatial mean to more complex measures such as the

maximum value for a given year. While the median of

the posterior draws of the time series of spatial means

(or the time series at a given location) will have, on av-

erage, smaller temporal variance than the corresponding

quantity calculated from the true field, the members of

the ensemble of posteriors draws have, on average, the

correct variance. By specifying a simple parametric form

for the spatial covariance matrix, BARCAST can pre-

dict the field at locations where there are no observa-

tions, while the specified autocorrelation means that the

estimates of the field for a given year are influenced by

observations from neighboring years. The model as-

sumptions can also be checked a posteriori, similar to

the residual analysis of a standard regression.

Demonstrations of the new method using pseudo-

proxy datasets constructed from the CRU temperature

compilation show that BARCAST produces reasonable

results from reasonable data. Three measures of skill—the

r2, CE, and percentage of withheld values covered by 90%

uncertainty intervals—indicate that BARCAST outper-

forms the RegEM algorithm in these experiments. Part II

presents more theoretical comparisons between these two

algorithms, which complement the practical comparisons

presented here.
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The methodology we have developed is immediately

applicable to any number of paleoclimate reconstruc-

tion problems. One of the advantages of the hierarchical

Bayesian analysis is the ease with which it can be ex-

tended and generalized within a cohesive conceptual

framework. For the purposes of illustrating the approach,

we have made a simple set of reasonable assumptions

and indicated a number of possibly useful extensions.

Acknowledgments. The content and presentation of

this manuscript benefited from discussions with E. Butler,

A. Dempster, B. Farrell, A. Rhines, T. Schneider,

J. Smerdon, S. Wofsy, and C. Wunsch and from the

comments of four anonymous reviewers. Simulations were

run on the Odyssey cluster supported by the FAS Re-

search Computing Group at Harvard University. Funding

for this work was provided by NSF Grant ATM-0902374.

APPENDIX A

Choosing the Hyperparameters for the Priors

To provide closure to the hierarchical model, we must

place prior distributions on all elements of Q, as well as

on T0, the vector of true temperature values for the year

before the first observations. Our approach is to put

independent and weakly informative proper priors on all

parameters and to show that the posteriors are dominated

by the data. Where possible, the priors are selected to be

conditionally conjugate. The use of uninformative, im-

proper priors in a model as complex as this is difficult, as

there is then no guarantee the posterior will be proper, and

checking is an onerous procedure (Gelman et al. 2003).

Below we explain our choices for the hyperparameters,

which tend toward those that are simplest, and provide the

values used for the examples in section 3.

d T0 ; N(mo, So). The simplest approach is to set mo 5 0

and So 5 s2
o � I, and then specify the prior standard

deviation so as some multiple (2 in the case of the

examples) of the standard deviation estimated from

all available instrumental data. Technically, this ap-

proach involves a double use of the instrumental data,

which is used to set the hyperparameters and to esti-

mate the elements of Q and T. This is not a concern,

however, as the data are only used to ensure that the

prior variance for T0 is similar to but larger than the

variance estimated from all instrumental data, and

thus the prior provides a weak but reasonable con-

straint on the posterior estimate of T0.
d a ; uniform (a0, a1). The simplest choice is to set a0 5 0

and a1 5 1, which is done in the examples.

d m ; N(m0, s0
2). We set the prior mean m0 to the mean

of all instrumental observations, and then set the prior

standard deviation, s0, to a high value (5 in the ex-

amples). The use of the data to set m0 is not an issue

because of the corresponding high value of s0. Our

approach is to use the data to ensure that the prior is

centered near the right area, but to then use a very

large prior variance to ensure that the posterior is

dominated by the data.
d s2 ; inverse-gamma (lT, nT). In other words, P(s2) }

(s2)�(lT 11) � exp(�nT /s2). This prior is conditionally

conjugate and corresponds to 2lT prior observations

with an average squared deviation of nT/lT (Gelman

et al. 2003). Provided that lT is small and nT reason-

able (they are both set to one-half in the examples),

the prior has little influence on the posterior.
d f ; log-normal (mf, sf

2), so that P(f) } (1/f) �
exp(2(lnf 2 mf)/2sf

2). For many large-scale climate

reconstruction problems, the spatial correlation dis-

tance is expected to be, broadly speaking, somewhere

between 10 and 1000 km, so the log of the inverse

distance should be between about 27 and 22.3; a low

information prior can be set accordingly. In the ex-

amples we set mf 5 24.65 and sf
2 5 1.2. This prior is

not conditionally conjugate.
d tI

2 ; inverse-gamma (lI, nI) and tP
2 ; inverse-gamma

(lP, nP). These are treated in the same way as the prior

for s2, by setting the prior parameters to correspond to

a very small number of prior observations with a rea-

sonable sum of squares, and showing that the data

overwhelms the prior. In the examples, we set all four

of these parameters to one-half.
d b ; N(h1, d1

2). Following Eq. (11), we set the prior

mean to

h
1

5
(1� t2

P)(1� a2)

s2

� ��1/2

,

using the prior modes of tP
2, a, and s2, and then set the

prior standard deviation d1 to something suitably high

(8 in the examples). If each proxy time series is as-

sumed a priori to be strictly positively correlated with

the local value of the underlying field, then the prior

for b1 can be set to a truncated normal to reflect this

information. Our strategy is to use a broader prior,

which puts nonzero weight on the whole real line. If

the resulting posterior has substantial weight less then

zero, we would interpret this as an indication that the

proxies cannot reliably constrain the true field values.
d b0 ;N(h0, d0

2) following Eq. (11), we set the prior

mean to the negative of the product of the prior means

for m and b1, and then set the prior standard deviation

d0 to something suitably high (8 in the examples).
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APPENDIX B

Conditional Posteriors

We detail the full conditional posterior of each un-

known (Table 1), using the notation Xj� to indicate the

conditional distribution of X given all other applicable

aspects of the model (parameters and data).

The conditional posterior of T0 is multivariate normal:

T
0
j�; N(C

0
V

0
, C

0
), where (B1)

V
0

5 S�1[aT
1
� a(1� a)m1]1 S�1

o mo, and (B2)

C
0

5(a2S�1
1 S�1

o )�1. (B3)

The conditional posteriors of the Tk, 0 , k , k are

multivariate normal:

T
k
j�; N(C

k
V

k
, C

k
), where (B4)

V
k
5HT

k J�1
k (W

k
� B

k
)1 S�1[a(T

k11
1 T

k�1
)

1 (1� a)2
m1], and (B5)

C
k
5 [HT

k J�1
k H

k
1 (1 1 a2)S�1]�1. (B6)

The conditional posterior of Tk is multivariate normal:
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), where (B7)
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k H
k
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The conditional posterior of a is a truncated normal,

where the bounds in subscripted square brackets indi-

cate the region of nonzero probability resulting from

the uniform prior (see appendix A):
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The conditional posterior of m is normal:
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The conditional posterior of s2 is inverse-gamma:

s2j�; inverse-gamma l
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The posterior of f does not follow any standard dis-

tributional form:

P(fj�) }P(f) � jRj�k/2 � exp � 1

2s2
�

k

k51
DTT

k,k�1R�1DT
k,k�1

 !
,

(B19)

where P(f) is the prior for f, and R is a function of f. We

place a log-normal prior on f, and, after suitable trans-

formation, sample the posterior distribution of log(f) using

a Metropolis step. Transforming to log(f) facilitates the

Metropolis step (Gelman et al. 2003), as log(f) has non-

zero probability on the real line, so we can use a symmetric

jumping distribution. The posterior for F [ log(f) is

P(Fj�) } jRj�k/2 � exp
�(F� m

f
)2

2s2
f

 

� 1

2s2
�

k

k51
DTT

k,k�1R�1DT
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!
. (B20)

We use a normal jumping distribution for the Me-

tropolis step to sample from the posterior, F*jF
t�1

;

N(F
t�1

, s2
F,MH), adjusting the jumping variance param-

eter s2
F,MH so the acceptance rate is about 40% (Gelman

et al. 2003), and exponentiate to transform back to f.

The conditional posterior of tI
2 is inverse-gamma:
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The subscript I denotes the subset of the bracketed

vector corresponding to the instrumental observations.

Simply put, rI,k is the vector of residuals between the

instrumental observations and the true temperatures at

time t, and the posterior distribution for tI
2 depends on

the sum of the squares of these residuals, which (prop-

erly scaled) is an estimate of the instrumental observa-

tional error variance.

The conditional posterior of tP
2 is also inverse-gamma,

and similar to that for tI
2:
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The subscript P denotes the subset of the bracketed

vector corresponding to the proxy observations. Simi-

lar to rI,k, rP,k is the vector of residuals between the

proxy observations and the transformed true temper-

atures at time t, and the posterior distribution for tP
2

depends on the sum of the squares of these residuals,

which (properly scaled) is an estimate of the proxy ob-

servational error variance.

The conditional posterior of b1, is normal:
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The conditional posterior of b0 is normal:
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