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ABSTRACT

Part I presented a Bayesian algorithm for reconstructing climate anomalies in space and time (BARCAST).

This method involves specifying simple parametric forms for the spatial covariance and temporal evolution of

the climate field as well as ‘‘observation equations’’ describing the relationships between the data types and

the corresponding true values of the climate field. As this Bayesian approach to reconstructing climate fields is

new and different, it is worthwhile to compare it in detail to the more established regularized expectation–

maximization (RegEM) algorithm, which is based on an empirical estimate of the joint data covariance matrix

and a multivariate regression of the instrumental time series onto the proxy time series. The differing as-

sumptions made by BARCAST and RegEM are detailed, and the impacts of these differences on the analysis

are discussed. Key distinctions between BARCAST and RegEM include their treatment of spatial and

temporal covariance, the prior information that enters into each analysis, the quantities they seek to impute,

the end product of each analysis, the temporal variance of the reconstructed field, and the treatment of

uncertainty in both the imputed values and functions of these imputations. Differences between BARCAST

and RegEM are illustrated by applying the two approaches to various surrogate datasets. If the assumptions

inherent to BARCAST are not strongly violated, then in scenarios comparable to practical applications

BARCAST results in reconstructions of both the field and the spatial mean that are more skillful than those

produced by RegEM, as measured by the coefficient of efficiency. In addition, the uncertainty intervals

produced by BARCAST are narrower than those estimated using RegEM and contain the true values with

higher probability.

1. Introduction

From a statistical perspective, reconstructing the tem-

poral evolution of a climate field from overlapping time

series of instrumental and proxy observations is a chal-

lenging problem. Instrumental and proxy records of

climate fields are invariably incomplete with respect to

their coverage in both time and space, necessitating

some statistical method for spatial and temporal in fill-

ing. In addition, the instrumental records are used to

both estimate the climate field under analysis and to

determine the relationship between the available proxy

records and the field. The goal in this context is to as-

similate the available instrumental and proxy information

to estimate, with uncertainties, the temporal evolution of

a climate field in some optimal manner. While various

methodologies have been explored, it is safe to say that

there remains significant scope for further testing and

development of methodologies for reconstructing and

interpreting past climate variability (NRC 2006; Jansen

et al. 2007; Jones et al. 2009).

Tingley and Huybers (2010, hereafter Part I) developed

a hierarchical Bayesian approach to reconstructing cli-

mate fields, referred to as BARCAST for ‘‘A Bayesian

algorithm for reconstructing climate anomalies in space

and time.’’ This approach is based on specifying para-

metric forms for the spatial covariance and temporal
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evolution of the field as well as the relationships between

the data types and the field. (See Part I for a detailed

description of BARCAST. A package of Matlab code that

implements the algorithm is available at ftp://ftp.ncdc.

noaa.gov/pub/data/paleo/softlib/barcast/.) As BARCAST

is new and different from other approaches to recon-

structing climate fields, it makes sense to compare it against

a method that is well established.

Most approaches to the climate field reconstruction

problem are based on a multivariate regression of the

instrumental time series onto the proxy time series dur-

ing a calibration period (e.g., Mann et al. 1998; Schneider

2001; Cook et al. 1999; Luterbacher et al. 2004; Jones

et al. 2009). The coefficients are then used to predict

the values of the missing instrumental observations back

through time using the available proxy time series. At

the heart of these methods is the estimation of the

mean of each time series and the joint covariance

matrix of the instrumental and proxy datasets—a sub-

matrix of which must be inverted to calculate the re-

gression coefficients. If the length of the overlap between

the instrumental and proxy datasets is short relative to

the number of time series—as is often the case—the

estimate of the covariance matrix of the instrumental

and proxy datasets is far from certain, and the req-

uisite matrix inversion generally not possible without

some form of conditioning or regularization. In addi-

tion, the proxy time series are generally of different

lengths, which complicates the estimation of the mean

and covariance.

The regularized expectation–maximization (RegEM)

algorithm (Schneider 2001), developed to overcome

these difficulties, has been applied extensively to cli-

mate field reconstruction problems (e.g., Rutherford

et al. 2003, 2005; Mann et al. 2007b, 2008; Steig et al.

2009; Zhang et al. 2004). This algorithm combines sev-

eral well known statistical techniques: the expectation–

maximization algorithm (Dempster et al. 1977) and

regularized regression, either ridge regression (Hoerl

and Kennard 1970) or truncated total least squares re-

gression (van Huffel and Vandewalle 1991; Fierro et al.

1997).

In this study, we compare the assumptions and be-

havior of RegEM and BARCAST to provide insight

into the novel features, strengths, and weaknesses of this

new approach to the climate reconstruction problem

and to position these developments within the context of

previous work. While RegEM is by no means the only

technique being used to reconstruct climate fields—

other methods include those of Mann et al. (1998); Cook

et al. (1999), and Luterbacher et al. (2004)—it is well

established in the literature and seems the most statis-

tically sophisticated method that has been widely applied.

The more theoretical comparisons in this study comple-

ment the practical comparisons of the two methods pre-

sented in Part I.

Section 2 briefly describes the technical aspects of

RegEM in a manner that facilitates comparisons with

BARCAST, section 3 compares the assumptions and

methods of BARCAST to those of RegEM, section 4

compares the results of applying variants of the two anal-

ysis strategies to simple surrogate datasets, and section 5

provides discussion and concluding remarks.

2. The RegEM algorithm

While the technical details of RegEM are described in

detail elsewhere (see, e.g., Schneider 2001; Mann et al.

2007b), it is convenient for the purposes of comparison

to summarize the main ideas behind this approach. We

first describe the expectation–maximization (EM) al-

gorithm and explain its shortcomings in the context of

climate reconstructions, then briefly describe the two

regularized regression techniques and how each of them

influences the results of the EM algorithm.

a. Expectation–maximization algorithm

The EM algorithm (Dempster et al. 1977; Gelman

et al. 2003) is an iterative technique for estimating dis-

tribution parameters and imputing missing values for

incomplete datasets. To illustrate the main concepts,

consider a number M of variables, assumed to follow

a multivariate normal distribution, and a number N of

independent samples of these variables. In the climate

context, the variables could be, for example, annual

mean temperature observations, both instrumental and

proxy, at a large number of spatial locations, and the

samples correspond to observations for different years.

Some percentage of the dataset is missing, and the miss-

ing data mechanism is assumed to be ignorable. Igno-

rability requires, in a Bayesian sense, that the probability

that data points are missing be a function only of fully

observed covariates, the observed data, and the param-

eters governing the missing data process (Rubin 1976;

Gelman et al. 2003).

Given a complete data matrix in which all time se-

ries span the same years and there are no missing values,

the mean vector and covariance matrix can be estimated

in a straightforward manner. Similarly, given a year of

incomplete data, the missing values can be imputed us-

ing the available values for that year, the mean vector,

and the covariance matrix as the conditional expectation

of the missing values given the observed values. The

EM algorithm, initialized with some estimate of the full

mean vector and covariance matrix of the incomplete

dataset (e.g., using all available data), iterates two steps:
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1) In the expectation step, missing values for each in-

complete sample are imputed as the conditional ex-

pectation of the missing variables given the observed

variables and the current estimates of the mean and

covariance matrix.

2) In the maximization step, the maximum likelihood

estimates (MLEs) of the mean and covariance matrix

are formed from the data matrix completed with the

most recently imputed values, noting that, as the im-

puted values are conditional expectations, the condi-

tional variances of the missing values must be added to

the estimate of the covariance matrix.

Details of the formulas involved can be found in stan-

dard references (e.g., Gelman et al. 2003). For the purposes

of this development, the key idea is that the expectation

step is a multiple linear regression. We make use of the

notation
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m
] ; N (m

o
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m
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where Xo and Xm are row vectors of length Mo and Mm

(where Mo 1 Mm 5 M) and represent the observed and

missing values, respectively, for a particular year, and m

and S are the population mean and covariance (which

have been partitioned). The distribution of XmjXo is

normal, with the mean and variance following standard

forms (e.g., Anderson 2003):
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The expectation step of the EM algorithm uses the

current estimates of the joint mean vector (m̂; quantities

estimated from data will be indicated with hats) and co-

variance matrix (Ŝ) to impute the missing values at each

year as the conditional expectation of the missing values,

given the observed values. The imputation has the form

of an MLE prediction from a linear regression, with the

estimate of the coefficient matrix given by b̂ [ Ŝ�1
oo Ŝ

om
.

If the number of predictor variables exceeds the

number of samples of the variables available to estimate

the covariance matrix of the predictors, then the sample

estimate of the predictor covariance matrix Ŝoo is rank

deficient, its inverse does not exist, and the estimate b̂ is

undefined. This is the case in the climate reconstruction

problem if the total number of proxy variables exceeds

the number of years in the overlap between the in-

strumental and proxy datasets. A similar problem can

arise if the data time series are correlated, in which case

Ŝoo can be nearly singular (at least one eigenvalue very

close to zero).

A number of techniques exist to regularize under-

determined or ill-posed regression problems; we describe

both ridge regression and truncated total least squares

(T-TLS) regression. In the original description of the

RegEM algorithm, Schneider (2001) makes use of ridge

regression to provide the regularization, arguing that

the continuous eigenvalue filtering offered by ridge re-

gression has advantages over the discrete set of trunca-

tion values offered by T-TLS (see below). Several studies

have found that reconstructions performed with the ridge-

regularized RegEM are sensitive to the standardization

applied to the data prior to analysis, and that the esti-

mation of the optimal ridge parameter can be poorly

constrained (Mann et al. 2007a,b; Smerdon and Kaplan

2007). These issues lead Mann et al. (2007b) to use T-TLS

to provide the regularization in RegEM. There is a sug-

gestion, however, that the shortcomings identified in

ridge-regularized RegEM result from a nonignorable

missing data structure, rather than the method, so will be

present regardless of the regularization strategy (Smerdon

et al. 2008).

b. Ridge regression

The basic idea behind ridge regression (Hoerl and

Kennard 1970), also called Tikhonov regression

(Tikhonov and Arsenin 1977), is the substitution of

(Ŝ
oo

1 h2D)�1 for Ŝ�1
oo , (3)

where D is a diagonal matrix. Schneider (2001) sets D to

the diagonal of Ŝ
oo

, and we follow this choice in the

development below. By inflating the diagonal of Ŝ
oo

, the

ridge procedure regularizes the regression by ensuring

that the necessary matrix inverse exists.

The ridge regularized estimate of the regression co-

efficient matrix can be written as

b
h
* 5 D�1/2(D�1/2Ŝ

oo
D�1/2 1 h2I)�1D�1/2Ŝ

om
, (4)

where D�1/2ŜooD�1/2 [ ~Soo is the sample correlation ma-

trix of the predictors. In other words, ridge regression, as

applied by Schneider (2001), involves adding a matrix

proportional to the identity to the sample correlation

matrix of the predictors. In the paleoclimate context,

the predictors are the observed proxy and instrumental

variables for a given year, and for most years in a re-

construction, only proxy observations will be available.

The ridge estimate bh* is biased toward underestimat-

ing the magnitude of the elements of b. In the case of a

univariate response, so that the coefficient matrix reduces

to a vector, setting h . 0 results in a smaller solution, in

the sense that b
h
*Tb

h
* # b̂

T
b̂ (Hoerl and Kennard 1970).
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The ridge estimate, however, can reduce the expected

mean squared error (MSE) of predictions relative to the

standard MLE solution, which results if h is set to zero

(Hoerl and Kennard 1970). The appendix presents

a geometric interpretation of ridge regression and an

example illustrating the effects of the regularization in

a simple case.

Poor regression models are known to result if the pre-

dictor variables are strongly correlated or if the number of

predictor variables is not much smaller than the number

of replicates (e.g., Zar 1999; Devore 1995); in both of

these cases, at least one of the eigenvalues of the sample

covariance matrix is small. The resulting MLE of the

regression vector can be large and is sensitive to small

changes in the values of the predictor variables. A pos-

itive value of h stabilizes the matrix inversion by putting

a lower bound on the eigenvalues of the sample co-

variance matrix, which reduces the magnitude of the

estimated regression vector. As the value of h increases,

the bias in the estimate of the regression vector mono-

tonically increases, while the variance decreases (Hoerl

and Kennard 1970). In the limit h / ‘, the estimates of

the coefficients converge to zero, as does the variance of

these estimates, while the bias saturates. As the MSE is

given by the sum of the squared bias and the variance

(e.g., Casella and Berger 2002), the possibility exists

that a positive value of h will result in an estimate with

lower MSE than the MLE (see Fig. 1 in Hoerl and

Kennard 1970). In practice, accepting a small amount

of bias often permits a substantial reduction in the

variance of the estimated regression vector, and thus

reduces the MSE of the estimate. Intuitively, the idea is

to limit the sensitivity of the estimates of the regression

coefficients to noise and spurious correlations, thereby

reducing the expected MSE of predictions while lim-

iting the bias.

Ridge regression, as applied by Schneider (2001), can

be interpreted as smoothly scaling the weights associated

with the eigenvectors of the sample correlation matrix of

the observed values, ~Soo. Weights corresponding to ei-

genvalues of ~S
oo

that are large relative to h2 are only

mildly affected, while weights corresponding to eigen-

values small relative to h2 are smoothly scaled toward

zero (Schneider 2001). In the climate reconstruction

context, RegEM generally uses proxy observations to

impute the missing instrumental observations so that ~Soo

is the sample correlation matrix of the proxy time series.

RegEM with ridge regularization thus involves smoothly

filtering the weights associated with the eigenvectors of

the sample correlation matrix of the proxy time series.

To estimate the ridge-regularization parameter,

Schneider (2001) makes use of a generalized cross vali-

dation procedure (Golub et al. 1979; Krakauer et al.

2004a,b) based on minimizing the expected MSE of pre-

dictions. In practice, all the missing values for a given year

can be imputed using one ridge parameter and a multiple

regression, or the missing values for a given year can each

be imputed separately using a number of simple regres-

sions, each with a distinct ridge parameter.

c. Truncated total least squares

To illustrate T-TLS, consider the standard regression

problem:

X
m

5 X
o
b 1 �,

where Xm is an N by Mm response matrix, Xo is an N by

Mo predictor matrix, b is the Mo by Mm coefficient

matrix, and � is an N by Mm noise term. Total least

squares regression seeks an estimate of the coefficient

matrix b that solves

mink(X
o
, X

m
)� (X̂

o
, X̂

m
)k

F
subject to X̂

m
5 X̂

o
b̂, (5)

where k�kF indicates the Frobenius norm (Fierro et al.

1997); see Golub and Van Loan (1980) for a more gen-

eral description of total least squares regression. This is

in contrast to ordinary least squares regression, which

seeks only to minimize the variance of the residual

X̂m � Xm, while assuming the predictor matrix Xo is

constant or fixed. The total least squares approach is

designed for so-called errors in variables models, in

which the predictor variables, as well as the response

variables, are assumed to contain errors (van Huffel and

Vandewalle 1991).

There are many ways of describing the T-TLS approach

(see Fierro et al. 1997, for an alternative description). For

the sake of simplicity, we assume that each variable has

a mean of zero. In this case, the scaled inner products

between the columns of the joint data matrix are esti-

mates of the elements of the joint covariance matrix:

1

N � 1
(X

o
, X

m
)T(X

o
, X

m
) 5

Ŝ
oo

Ŝ
om

Ŝ
mo

Ŝ
mm

 !
[ VL2VT,
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where L2 is diagonal and composed of the eigenvalues,

arranged from largest to smallest, of the joint covariance

matrix of the response and predictor variables, and V is

the corresponding matrix of eigenvectors. The same ei-

genvector matrix V can be obtained from a singular

value decomposition of [Xo, Xm]. If the problem is un-

derdetermined, some of the eigenvalues will be zero; if

the problem is poorly conditioned (nearly colinear pre-

dictors or response variables), some of the eigenvalues

will be very small. The idea behind T-TLS is to retain only
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the eigenvectors corresponding to eigenvalues above

some cutoff. In other words, some number n , Mo 1 Mm

of the eigenvectors of the joint [predictor, response]

sample covariance matrix are used to predict the re-

gression coefficient matrix b. Denoting the upper-left

n 3 n submatrix of L2 by Ln
2, and the first n columns of

V by Vn, define Hn as

V
n
L2

nVT
n [ H

n
5

H
11

H
12

H
21

H
22

� �
, (7)

where H11 is Mo by Mo and H22 is Mm by Mm. Hn is the

truncated representation of Ŝ using only the n largest

eigenvalues, and thus the pseudoinverse Hy11 of H11 is an

approximation of Ŝ�1
oo , and H12 is an approximation of

Ŝ
om

. The T-TLS estimate of the regression coefficient

matrix b is then [cf. Eq. (2)]

b̂
n

5 Hy11H
12

. (8)

If the regression problem is overdetermined (i.e., there

are more records than variables, N . Mm 1 Mo 5 M) and

well conditioned (predictors or responses not close to co-

linear, so the eigenvalues are not too close to zero), then

there are several special cases of the T-TLS approach:

d If n 5 M, the resulting b̂
M

is simply the MLE

b̂ 5 Ŝ�1
oo Ŝ

om
[cf. Eq. (2)].

d If n 5 Mo, the resulting b̂Mo
is the standard total least

squares estimate, which, if the uncertainties in both

predictor and response variables are the same, mini-

mizes the mean square orthogonal distance from the

data points to the line of best fit (van Huffel and

Vandewalle 1991; Golub and Van Loan 1980).
d If n , Mo, the resulting b̂

n
is labeled by Fierro et al.

(1997) as a truncated total least squares estimate.

If the system is underdetermined—that is, the rank of

[Xo, Xm] , M, which results if N , M, or the predictors

are colinear—then the truncated total least squares so-

lution results if n , min(Mo, rank [Xo, Xm]).

The formulation b̂
n

5 Hy11H12 shows that T-TLS results

in a filtered solution, in the sense that the eigenvectors of

the joint covariance matrix corresponding to small ei-

genvalues are not used in the estimation of b̂
n
. In the

context of climate reconstruction problems, RegEM

regularized with T-TLS involves predicting the missing

instrumental values using only the leading patterns of

the joint instrumental and proxy covariance matrix. The

T-TLS regularization parameter, which gives the num-

ber of eigenvectors retained in the estimate of the joint

covariance matrix, can take on only a finite number of

values and in the context of RegEM is set a priori. This

is in contrast to the regularization parameter in ridge

regression, which can take on any value and is chosen

adaptively by RegEM.

d. Uncertainty estimation in RegEM

Estimation of the uncertainty in the values imputed by

RegEM, using either ridge or T-TLS regularization, is

nontrivial. If the covariance matrix and mean of the joint

data matrix are known, and no regularization is used,

then the estimated uncertainty in the imputed values

follows directly from Eq. (2). However, both the mean

and covariance structure are estimated from the data,

and at least one regularization parameter that modifies

the estimate of the covariance matrix is either speci-

fied (T-TLS) or estimated from the data (ridge). The

RegEM uncertainty estimate takes the form of the re-

gularized sample estimate of the conditional variance

[i.e., the variance form in Eq. (2) estimated using RegEM],

scaled to account for the loss of degrees of freedom due

to the estimation of the regularization parameters as

well as the uncertainty in these parameters. The result-

ing estimates of the uncertainties in the imputed values

are lower bounds, and are generally too small (Schneider

2001). To correct for this bias, Schneider (2001) suggests

inflating the regularized estimate of the conditional co-

variance matrix by some additional factor that is deter-

mined via numerical simulations.

3. Comparing BARCAST and RegEM:
Assumptions and methodology

The RegEM approaches, which are generalizations of

the EM algorithm, assume that the dataset is composed

of a series of independent, identically distributed draws,

some of which are incomplete, from a multivariate

normal distribution. BARCAST likewise assumes that

the data vector for each year is a (possibly incomplete)

draw from a multivariate normal distribution, but makes

a number of additional assumptions about the temporal

and spatial covariance structure of the underlying field.

We now turn to a point-by-point comparison of the as-

sumptions, methodologies, and end products of these

two approaches. Unless otherwise specified, RegEM

will refer in this section to the family of reconstruction

techniques that includes the EM algorithm and RegEM

regularized using either ridge regression or T-TLS.

a. Treatment of missing data

A key assumption made by both BARCAST and

RegEM is that the distribution of the missing observa-

tions is ignorable (Rubin 1976; Gelman et al. 2003). An

example of a dataset with a nonignorable missing data

structure would be an ice core that features missing values
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related to surface melting events during particularly warm

years. More generally, the amount of available climate

data has increased over the last 150 years, as have both

greenhouse gas concentrations and temperatures. In

addition, proxy records such as tree rings are only

available in geographical regions with particular cli-

mates amenable to the development of the proxy—there

are no tree ring records from Greenland, for example.

These facts suggest that the assumption of ignorability is

likely incorrect. While not explored here, the influences

of the missing data structure on climate reconstructions

is a topic that warrants, and is beginning to receive,

further investigation (e.g., Smerdon et al. 2008).

b. Covariance matrices

BARCAST and RegEM make use of different co-

variance matrices, the implications of which will be dis-

cussed in several contexts below. BARCAST estimates

the parameters of a specified spatial covariance form,

which can then be used to specify the covariance matrix

of the underlying true field values at the locations of the

data time series and any other target locations of in-

terest. RegEM, in contrast, is based on an estimate of

the joint covariance matrix of the proxy and instru-

mental time series.

c. Local versus global relationships

BARCAST assumes that observations reflect infor-

mation about the local field values and then makes use

of a parametric spatial covariance form to allow the

observations at one location to influence predictions of

the field value at other locations. We currently specify

the spatial covariance to follow an exponential decay of

correlation with separation, so that the weight of each

observation in estimating the field at a particular loca-

tion decreases with distance from that location. RegEM,

in contrast, makes use of all linear relationships between

the proxy and instrumental time series, as estimated by

the sample cross-covariance matrix, and so can exploit

strong covariances between distantly separated proxy

and instrumental time series. While BARCAST im-

plicitly assumes that the spatial correlation length scale

of the field is constant through time, RegEM makes the

same stationarity assumption with regards to the more

complex patterns of covariance between the proxy and

instrumental time series.

We stress here and below that, in any particular sce-

nario, one analysis might be more appropriate than the

other. In particular, if the field values at pairs of distantly

located points are often more correlated than at pairs

of more closely located points, then the field estimates

produced by the current implementation of BARCAST

will suffer, while those from RegEM will not. In such a

scenario, the simple spatial structure currently assumed

by BARCAST prohibits the algorithm from exploiting

covariance structures between distant points. That said,

the examples presented in Part I show that, using rea-

sonable pseudoproxy data, BARCAST produces re-

constructions of North American surface temperatures

that are demonstrably superior to those produced by

RegEM.

d. Regularization and prior covariance information

BARCAST parameterizes the structure of the spatial

covariance matrix of the field with two unknowns: the

covariance at zero separation and an inverse length scale

that describes the exponential decay of covariance as

a function of separation. Specification of a parametric

form for the spatial covariance matrix of the field reg-

ularizes the analysis by reducing the total number of

parameters that must be estimated from the data and by

ensuring that the estimated covariance matrix is not

singular. These assumptions can be thought of as placing

a prior on the structure of the covariance of the field, and

section 4 will explore the performance of BARCAST

when this prior is clearly incorrect. The physically based

assumption that climate fields display covariance that

decays as a function of separation, while not likely per-

fect in any given situation, is likely adequate in many

(see Fig. 2 of Part I). As discussed in Part I, more

complicated spatial relationships could be incorporated

into BARCAST by modifying the parametric from of

the covariance matrix.

BARCAST also involves prior information in the

form of the prior distributions for the scalar parameters

and the field values for the first year of the recon-

struction. In realistic applications we find that these

priors are sufficiently diffuse as to have no noticeable

influence on the posterior distributions (see Fig. 8 of

Part I and Tingley 2009).

RegEM, in contrast, is based on empirical estimates of

the joint proxy–instrumental covariance matrix and so

involves estimating the covariance between each pair of

data time series. While RegEM exploits all linear re-

lationships between the proxy and instrumental time

series, there is often insufficient data to adequately con-

strain the covariance matrix. The techniques used to

regularize the regression, both T-TLS and ridge re-

gression, can be interpreted in terms of prior constraints.

T-TLS limits the number of distinct patterns in the joint

data covariance matrix used in the analysis and so can

be interpreted as constraining a priori the complexity

of the data structure. Similarly, ridge regression can be

interpreted as down weighting the contributions of the

eigenvectors of the proxy covariance matrix associated

15 MAY 2010 T I N G L E Y A N D H U Y B E R S 2787



with small eigenvalues, so a priori emphasizes a smaller

number of patterns in the data structure.

In the case of a univariate response, the ridge estimate

of the coefficient vector, bh* [cf. Eq. (4)], has a simple

Bayesian interpretation. Given the regression model

Xm 5 Xob 1 �, with �; N(0, s2I ), then bh* is equivalent

to the posterior mean which results from placing a

N(0, s2(h2D)21) prior on b (Hoerl and Kennard 1970).

That is, ridge regression implicitly assumes a prior that

generally reduces the magnitudes of the estimated re-

gression coefficients. While BARCAST and the RegEM

techniques differ with regards to the covariance matrix

that underpins the analysis—BARCAST makes use of a

spatial covariance matrix whereas RegEM considers the

sample covariance matrix of the data time series—each

makes use of what can be interpreted as prior informa-

tion to ensure that a required matrix inverse exists.

Prior to analysis with RegEM, it is sometimes useful

to reduce the number of proxy time series using princi-

pal component analysis (PCA) or other techniques. This

has been done in practice, for example, when dealing

with large numbers of nearby tree ring records (e.g.,

Rutherford et al. 2005). The resulting reduced dataset

requires less regularization, as a large number of highly

correlated time series are replaced by a much smaller

number of weighting time series, each associated with a

dominant mode of variability of the network. BARCAST,

in contrast, is designed to impute spatially and temporally

complete fields from spatially incomplete instrumental

and proxy observations. There is no need for data re-

duction with BARCAST, which makes explicit use of

the location of each time series and a parametric spatial

covariance form that anticipates that nearby observa-

tion time series will be highly correlated. A cluster of

observations will result in the field estimates in that

region having low uncertainty, but these observations

will only affect estimates of the field at other locations

according to the assumed exponential decay of spatial

covariance.

To insure adequate regularization, RegEM has also

been applied after using PCA to reduce the instrumental

dataset to a smaller number of loading time series, each

corresponding to a dominant mode of spatial variability

(e.g., Mann et al. 2007b; Steig et al. 2009). As the in-

strumental time series are generally of different lengths,

it can be necessary to impute the missing instrumental

values prior to performing the PCA, and this has been

done using an additional application of RegEM (e.g.,

Rutherford et al. 2005). As BARCAST makes explicit

use of the spatial location of each instrumental time

series, it is not an appropriate tool for reconstructing

loading time series resulting from a PCA, nor is there

a need to use PCA when data are closely spaced.

e. Temporal autocorrelation

Most climate time series feature nonzero temporal

autocorrelation, and BARCAST includes this informa-

tion in the analysis by specifying that the field evolves

according to a first-order multivariate autoregressive

process. While this assumption is not likely to be exact in

many applications, climate time series do tend to have red

spectra (e.g., Hegerl et al. 2007), suggesting it is a better

assumption than zero autocorrelation.

RegEM, in contrast, assumes that the observations at

subsequent years are independent, which has at least

two important ramifications if the system does in fact

have nonzero temporal autocorrelation. First, RegEM

does not exploit the information available form obser-

vations at neighboring years in the prediction of the field

for each year. Second, the estimated uncertainties in

the sample mean vector and covariance matrix will be

biased toward low values, as temporal autocorrelation

reduces the degrees of freedom available for estimat-

ing these quantities. In practice, temporal dependencies

have been incorporated into RegEM by considering

lags in the relationship between the proxy and instru-

mental observations. For example, Rutherford et al.

(2005) use proxy observations at times t 2 1, t, and t 1 1

to infer the instrumental observations at time t, but find

that the additional predictors do not increase the skill

of the reconstructions. In contrast, Schneider (2001) sug-

gests incorporating temporal autocorrelation into RegEM

by augmenting the vector [Xo, Xm] for each year t to in-

clude observations from years t 2 1 and t 1 1 as well,

which has not yet been done in practical applications.

f. End products

The end products of a RegEM analysis are the

completed-by-imputation data matrix, estimates of the

uncertainty in the imputed values, and estimates of

the mean vector and covariance matrix. The end product

from BARCAST is an ensemble of draws of the space–

time field and scalar parameters, each of which is consis-

tent with the data and model assumptions. This ensemble

can be used to estimate the full posterior distributions

of any number of quantities, from simple measures like

the temporal evolution of the field at each location to

more exotic quantities like, for example, the probability

that the mean (spatially and temporally) of the surface

temperature field was more extreme over the most re-

cent decade than over any other decade covered by the

reconstruction (see Tingley 2009).

g. Target quantities and locations

RegEM, as currently implemented, imputes missing

instrumental observations and so can estimate the field
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only at spatial locations where instrumental observations

are available during the calibration period. BARCAST

seeks to impute the underlying true field values and can

do so at any set of spatial locations. This results from the

differing assumptions regarding the spatial covariance

structure. As BARCAST assumes a parametric from, and

then uses the data to estimate the parameters, the con-

ditional distribution of the field at any set of locations,

given the observations, is readily specified (see Part I).

RegEM is based on the sample covariances between each

pair of data time series and so does not predict the field at

locations without observations (see Fig. 5 of Part I).

The missing instrumental values imputed by RegEM

at each year could be interpolated spatially via kriging

(e.g., Banerjee et al. 2004) to give a complete field. The

ability of RegEM to exploit strong correlations between

time series at distantly separated locations is often cited

as an advantage of the method (e.g., Jones et al. 2009),

whereas simple kriging techniques tend to be based on

stationary, and usually isotropic, parametric spatial co-

variance forms that describe a decay of correlation with

increased separation (e.g., Banerjee et al. 2004). Using

a simple kriging procedure on the output from RegEM

to produce a spatially complete field estimate thus in-

volves two different views of the spatial covariance: the

first an empirical data estimate and the second based on

a simpler parametric form. Apart from these issues, such

a multistep analysis complicates the propagation of un-

certainty estimates.

h. Error estimation for the imputed values

Uncertainties for the field estimates produced by

BARCAST are estimated by calculating the 5th and

95th (or any other) percentiles of the ensemble of poste-

rior draws and thus account for the uncertainty in all other

parameters of the model. Those from RegEM, in contrast,

do not account for the uncertainty in the estimation of

the covariance matrix or the regularization parameters.

As a result, the basic uncertainty estimates from RegEM

tend to be too small, so a variance inflation factor must

be estimated to ensure that confidence intervals have the

correct coverage rates (Table 3 of Part I; Schneider 2001).

For the trials reported in Part I, the uncertainty estimates

from BARCAST have the correct coverage rates, while

those from RegEM, when the variance inflation factor is

set to the default of one, do not (Table 3, Part I).

Neither BARCAST nor RegEM account for errors

in the structure of the estimation model—results using

BARCAST are conditional on the assumptions made

about the covariance matrix, autoregressive temporal

evolution, and observation equations. If, for example,

the assumption that the proxies have a linear relation-

ship with the true values (BARCAST) or instrumental

observations (RegEM) is incorrect, then the uncertainty

estimates will tend to be biased low. In addition,

BARCAST, but not RegEM, makes a simplifying as-

sumption about the spatial covariance of the field which

is unlikely to hold exactly in practice, and as a result,

uncertainty estimates from BARCAST could be biased

low in practical applications. Section 4 explores the ro-

bustness of BARCAST to deviations from the model

assumptions using simple surrogate datasets, and future

work will investigate these issues in more realistic sce-

narios, as has been done for RegEM (Rutherford et al.

2005; Mann et al. 2007b).

Differences in error estimation also arise as a conse-

quence of the reconstruction techniques having different

target quantities. As RegEM seeks to impute the missing

instrumental observations, there is no uncertainty asso-

ciated with the reconstruction over the calibration in-

terval (see Part I, Figs. 5 and 7). BARCAST, in contrast,

treats the instrumental time series as noisy observations

and seeks to estimate the underlying true field. Note,

however, that if the estimate of the instrumental error

variance is small relative to that for the proxies, this dis-

tinction between RegEM and BARCAST will likewise

be small.

The ensemble of posterior draws produced by

BARCAST can be used to estimate the uncertainty in

the imputed instrumental values by adding to each en-

semble member white noise draws with variance given

by the corresponding draw of the instrumental obser-

vational error, and then taking the percentiles of the

resulting distributions. RegEM, in contrast, does not

infer observational errors and so can only estimate the

uncertainty associated with imputations of the missing

instrumental values, which, in the presence of uncer-

tainty in the instrumental observations, will be larger

than those for the missing field values.

i. Estimating functions of the field and the
associated uncertainty

It is often of interest to estimate the time evolution of

the spatial mean of a climate quantity over a particular

region and the associated uncertainty. BARCAST pro-

duces both these quantities by specifying as the target

locations a number of evenly distributed points in the re-

gion and then taking, for each posterior draw of the field,

the mean across these target locations. The percentiles of

the resulting distribution can be used to produce both an

estimate of the time evolution of the spatial mean and an

estimate of the associated uncertainty. RegEM can like-

wise estimate the spatial mean and associated uncertainty

at each year as a linear function of the imputed instru-

mental values, where the weights given to each imputed
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observations can be set to take into account the hetero-

geneous distribution of instrumental observations.

The ensemble of draws of the space–time field pro-

duced by BARCAST can be used to calculate the prob-

ability distribution of any function of this field by applying

the function to each ensemble member and then esti-

mating percentiles. One function that is frequently plot-

ted (e.g., NRC 2006) is the estimate of the spatial mean,

smoothed through time (see Part I, Fig. 7). RegEM allows

for a point estimate of any function of the space–time

field, with the caveat that the target locations are limited

by the spatial distribution of the instrumental time series.

There is, however, no general way of estimating the un-

certainty in functions of the imputed values. As an ex-

ample, it is straightforward to smooth (through time) the

estimate of the spatial mean, which can be plotted to-

gether with the smoothed uncertainty envelope for the

spatial mean, but this smoothed uncertainty envelope is

biased to be wider than the uncertainty in the smoothed

quantity (see Part I, Fig. 7).

j. Regression dilution and the temporal variance of
the reconstruction

Climate reconstruction approaches based on ordinary

least squares regression, which minimize the error sum

of squares, result in reconstructions of a field or spatial

mean biased toward having lower temporal variance

over the interval when only proxy observations are

available than over the calibration interval (NRC 2006).

Ordinary least squares regression assumes that the pre-

dictor variables, which are generally the proxy observa-

tions in the paleoclimate reconstruction problem, are

error free. If this assumption holds, then the paleoclimate

problem reduces to inferring the field at the target loca-

tions given error-free information at the proxy locations,

which are generally sparse and heterogeneously distrib-

uted. Even in this idealized circumstance, not all of the

variability of the climate field at the target locations will be

captured by the information provided at the proxy loca-

tions. As a result, the predictions from an ordinary least

squares regression of the field values at the target location

will in general be less variable than the true values.

Furthermore, the assumption that the proxy obser-

vations are error free is clearly wrong, and errors in the

predictor values result in ordinary least squares esti-

mates of the regression coefficients that are biased to-

ward zero—this is the so-called regression dilution

problem (e.g., Frost and Thompson 2000). There are two

issues that warrant discussion with regards to regression

dilution: estimation of the regression coefficients and

inference on the response variables using predictors that

contain errors—the latter being the main goal of climate

reconstructions.

To explore the first issue, consider the simple linear

regression problem Xm 5 Xob 1 �, where b is a scalar

and for the sake of simplicity we assume that the vectors

Xm and Xo both have means of zero. The ordinary least

squares estimate of the regression coefficient can be

written as b̂Xo
5 Cov[Xm, Xo]/Var[Xo]. Assuming in-

stead that we observe Z [ Xo 1 h, where the elements of

h are independent and identically distributed (iid) draws

from a normal distribution with a mean of zero and var-

iance d2, the estimate of the regression coefficient linking

the elements Xm to the elements of Z is then b̂
Z

5

Cov[Xm, Z]/Var[Z] 5 Cov[Xm, Xo]/(d2 1 Var[Xo]). If

the goal of the analysis is to estimate the relationship

between Xo and Xm based on the observations of Z and

Xm, then the ordinary least squares approach results

in an estimate of the coefficient b̂ that is biased toward

zero.

If there are multiple measurements of the predictor

variables for each measurement of the response variable,

a number of techniques exist to correct for regression di-

lution based on inferring the variance of the errors in the

predictor values (Frost and Thompson 2000). If this is not

the case, the regression dilution effect can be mitigated by

using more robust alternatives to ordinary least squares

regression. Total least squares regression, which results

from setting n 5 Mm in Eq. (8), provides unbiased esti-

mates of the regression coefficients when the predictor

and response vectors each contain iid errors with the

same variances (Fierro et al. 1997; Golub and Van Loan

1980). A simple modification can produce unbiased esti-

mates if the errors in the two variables have different

variances, but with a known ratio. These regression tech-

niques can thus correct for the bias in the estimate of the

slope, but they require an assumption about the relative

errors in the response and predictor variables.

BARCAST, in contrast, accounts for errors in the

predictor variables by explicitly modeling both the proxy

and instrumental observations as containing errors. The

assumptions made by BARCAST about the spatial struc-

ture of the field allow the algorithm to infer both the re-

lationship between the field at the observation and target

locations and the errors associated with the proxy and

instrumental observations.

To compare the reconstruction methods with regards

to this issue, we recast aspects of the BARCAST for-

malism developed in Part I to mimic the RegEM ap-

proach, assuming for the sake of simplicity that the

autoregressive coefficient a is zero. The goal is to predict

a set of instrumental observations WI given a number of

proxy observations WP (i.e., WP,I correspond to Xo,m

from section 2). The joint distribution of the two types

of observations is multivariate normal, and the mean

and covariance follow from taking the expectation and
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variance of Eq. (6) of Part I with respect to the true field

values:

W
I

W
P

� �
; N

(b
1
m 1 b

0
)1

m1

� �
,

Ss
I,I 1 t2

I I Ss
I,P

Ss
P,I Ss

P,P 1 t2
PI

 !" #
.

(9)

Here tI
2 and tP

2 are the error variances for the proxy and

instrumental observations, Ss
I,P is the cross spatial co-

variance of the true field at the locations corresponding

to the observations WI and WP, and similarly for the

other Ss. A superscript s is used here to distinguish the

spatial covariance matrix used by BARCAST from

the covariance of the joint proxy and instrumental da-

taset used by RegEM. The conditional distribution of

the instrumental observations, given the proxy obser-

vations, is likewise normal:
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where the term Ss
I,P(Ss

P,P 1 t2
PI)�1 is a matrix of re-

gression coefficients. As BARCAST estimates the spatial

covariance matrix Ss separately from the observational

error variances tI
2 and tP

2, it is possible to disentangle the

uncertainty introduced by the observational errors from

the uncertainty introduced by the predictors not being

collocated with the response variables. RegEM, in con-

trast, estimates the joint covariance of the proxy and in-

strumental time series, which includes these observational

variances.

Setting tI
2 to zero in Eq. (10) gives the conditional

distribution of instrumental observations with zero ob-

servational error, which are equivalent to the underlying

field values, given the proxy observations. Note that tI
2

appears in the expression for the conditional variance

but not the conditional mean—the presence of instru-

mental observational error does not change the estimate

of the mean value of the unknown quantity, but it does

change the associated uncertainty estimate. If tP
2 is also

set to zero, then Eq. (10) gives the conditional distri-

bution of a number of true field values given (a linear

transformation of error free) observations of other field

values. If the error-free elements of WI and WP are

collocated, the regression is then ill posed as the joint

covariance matrix is singular. In this context, the pres-

ence of observational error plays a similar role to the

ridge parameter in regularizing the regression and re-

ducing the estimates of the regression coefficients.

The second issue with respect to regression dilution

concerns the estimation of the response variables given

noisy estimates of the predictors. In this instance, the

optimal solution from the perspective of minimizing

expected MSE of prediction is to use estimates of the

regression coefficients that do not correct for regression

dilution (Frost and Thompson 2000). While BARCAST

disentangles the spatial effect (predictors and response

variables not collocated) from the uncertainty intro-

duced by observational errors, the predictions from the

noisy proxy observations are made using regression co-

efficients reduced by the presence of errors in the pre-

dictors [Eq. (10)]. The variance of a reconstruction from

either BARCAST or RegEM will be biased low, relative

to the variance of the true values, by the presence of

errors in the proxy observations. This is not necessarily a

flaw, and the ideal balance between producing a recon-

struction with unbiased temporal variance and one that

minimizes the expected MSE of predictions will likely

depend upon the goals of the analysis.

4. Comparing BARCAST and RegEM: Numerical
experiments

To facilitate the comparison between RegEM and

BARCAST we make use of trials conducted on variations

of a simple surrogate dataset specifically constructed in

accordance or discordance with the assumptions made by

BARCAST. Initially, nine true field time series, specified

as being located at unit-spaced nodes on a line, are gen-

erated according to a multivariate first-order autore-

gressive process driven by innovations with covariance

that decays exponentially as a function of separation. See

Table 1 for parameter values and Table 1 from Part I for

a description of the notation.

Surrogate ‘‘instrumental’’ time series with a signal-to-

noise ratio (SNR) of three are produced from the last

half of each true value time series by adding iid draws

from a mean-zero normal distribution to the true values.

Surrogate ‘‘proxy’’ time series are produced from the

full length of every second surrogate time series by

adding iid draws from a mean-zero normal distribution

to the true values. These proxy time series are then

standardized by removing the common mean and di-

viding by the common standard deviation of all proxy

observations (cf. the algorithm presented in Osborn and

Briffa 2006). The second half of each dataset acts as

a calibration period, while the first half of each dataset is

used to test the reconstructions. We will vary the length

of the dataset and the proxy SNR, which is calculated in

terms of standard deviations, while keeping the number

of locations fixed at nine. Each set of experiments dis-

cussed below is based on applying the reconstruction
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techniques to 100 surrogate datasets for each length or

proxy SNR.

BARCAST makes explicit use of the spatial separation

between time series in calculating the covariance matrix,

so the results are dependent on the spatial locations of the

data time series. To explore the sensitivity of BARCAST

to the correctness of the assumptions made about the

spatial covariance, we apply BARCAST to both the sur-

rogate datasets with the time series tagged with the

‘‘correct’’ locations (those used to construct the data),

and with ‘‘incorrect’’ locations, formed by switching the

locations assigned to the second and fourth time series

with those assigned to the eighth and sixth time series.

The spatial covariance of the resulting dataset strongly

violates the structure assumed by BARCAST.

RegEM requires the specification of a variance in-

flation factor, and either ridge parameter(s) or a trun-

cation parameter, for regularization via ridge regression

or T-TLS, respectively (Schneider 2001). In the experi-

ments below, the variance inflation parameters are set

to give reasonable results in terms of the coverage rates

of the resulting confidence intervals, the generalized

cross validation presented in Schneider (2001) is used

to choose values of ridge parameters, and we explore

several choices for the truncation parameter required by

T-TLS. The objective selection of these parameters re-

mains something of an open question and will not be

addressed in this study; see Mann et al. (2007b) for

further discussion.

We will distinguish below between a number of dif-

ferent reconstruction methods, summarized here for

convenience. Ridge-I refers to RegEM regularized with

a separate regression and ridge parameter estimation for

each missing value, while Ridge-M refers to RegEM

regularized with a multiple regression and single ridge

parameter estimation for each year with missing values.

T-TLS(k) refers to RegEM regularized with truncated

total least squares regression, retaining k eigenvectors of

the joint covariance matrix, while EM refers to appli-

cation of the standard EM algorithm- that is, RegEM

applied without regularization. BARCAST refers to

the application of the Bayesian algorithm to the data

tagged with the correct locations while BARCAST(L)

indicates that the data time series are tagged with the

incorrect locations. The results from BARCAST and

BARCAST(L) are tested against the same set of true

values: the only difference between the two cases is that

in the first the location information corresponding to each

time series is the same as was used to generate the data,

while in the second the location information is switched

between the generation and analysis of the data.

a. Coefficient of efficiency as a function
of dataset length

It is of interest to understand how the reconstructive

skill of the various methods depends on the length of the

dataset, which determines the amount of information

available for inferring the relationships between the

data types (RegEM) or the relationships between the

data types and the true field (BARCAST). Here and

below, ‘‘field’’ refers to the true values of the nine time

series generated in each experiment, and we will limit

the reconstructions to inferences on the missing field or

instrumental values at the locations of these surrogate

time series. We assess the skill of the reconstructions of

both the field and the spatial mean using the coefficient

of efficiency (CE) statistic (Cook et al. 1994; Rutherford

et al. 2005):
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If each estimate, ŷi, is set to the true mean, yi, of that

variable over the testing interval, then the CE is zero. A

positive value indicates that the reconstruction contains

information about the variation of the true values about

the mean.

We consider surrogate datasets ranging in length from

4 to 100, with a proxy SNR of 1, and report the 25%

trimmed mean of the CE values that result from pro-

ducing and analyzing 100 realizations of the surrogate

TABLE 1. Posterior percentiles of the eight scalar parameters

estimated by BARCAST, for a typical analysis of a surrogate data-

set of length 100 and a proxy SNR of 1. See Table 1 of Part I for

definitions of the parameters. The first set of percentiles refers to

the analysis performed with the time series tagged with the correct

locations, and the second set, denoted with (L), refers to the

analysis performed after switching the location tags. The parame-

ter values used to construct the dataset are listed in the second

column. The ‘‘true’’ values of the last three parameters, tP
2, b0 and

b1, are in bold, as these are not specified in the data construction—

the proxy records are simply standardized after the addition of noise

[see Part I, Eq. (9)].

Percentiles Percentiles (L)

Parameter Truth 0.05 0.50 0.95 0.05 0.50 0.95

a 0.50 0.34 0.49 0.57 0.49 0.57 0.65

m 0 20.22 0.06 0.33 20.15 0.08 0.30

s2 1 0.81 1.02 1.29 0.77 0.94 1.15

f 0.25 0.20 0.28 0.36 0.65 0.93 1.33

tI
2 0.1481 0.09 0.14 0.21 0.13 0.22 0.34

tP
2 0.5 0.57 0.65 0.74 0.54 0.63 0.72

b1 0.6124 0.43 0.50 0.58 0.45 0.53 0.62

b0 0 20.12 20.03 0.05 20.13 20.04 0.05
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dataset for each length (Fig. 1). As the CE values are

occasionally very large and negative for each method,

we use a trimmed mean (formed in this case by dis-

carding the largest and smallest 25% of the values) as

a robust measure of the center (e.g., Devore 1995). The

trimming percentage does not affect the main results

reported below, but a lower trimming percentage re-

quires a greater number of realizations for these results

to become apparent.

For most dataset lengths, BARCAST and BARCAST(L)

result in the highest trimmed mean CE values for both

the reconstruction of the mean and the field (Fig. 1).

Results for BARCAST(L) are comparable to those for

BARCAST for the mean reconstructions but are uni-

formly lower for the field reconstructions. The infer-

ences made by BARCAST and BARCAST(L) about

the scalar parameters lend insight into the influences of

the covariance misspecification on the results (Table 1).

BARCAST(L) infers a much larger value for the inverse

spatial range parameter f, which is to be expected as

switching the location tags results in the spatial co-

variance having a shorter length scale. BARCAST(L)

also results in larger estimates of the instrumental ob-

servational error variance, tI
2. As the dataset does not

follow the assumptions about the spatial covariance, the

analysis infers larger errors in the data time series to bring

the estimates of the field in line with the assumptions.

The CE values for BARCAST and BARCAST(L)

plateau once the series length reaches about 50. With

this much data, the algorithm can accurately identify the

scalar parameters of the analysis model so that the es-

timated uncertainty in each reconstruction is primarily

the result of the proxy data being both noisy and in-

complete. The CE values for T-TLS(1) likewise plateau

once the series length reaches about 65, with the values

being uniformly lower than those for BARCAST(L);

results are similar for T-TLS(2). The plateau indicates

that the retained eigenmode(s) are well estimated by the

data, but do not capture the full covariance structure

of the surrogate instrumental and proxy observations.

On the other hand, retaining more eigenmodes than can

be well constrained by the data leads to less skillful

reconstructions—for this reason, the field CE values for

T-TLS(2) are smaller than those for T-TLS(1) for short

series lengths (not shown).

For both the mean and the field, the Ridge-M recon-

structions are initially more skillful—then less skillful—

than the T-TLS reconstructions, and for series lengths

greater than about 65 (95) for the mean (field), they

are more skillful. Results are similar for Ridge-I.

For series lengths longer than about 90, the Ridge-M

field reconstructions are more skillful than those from

BARCAST(L). Both versions of RegEM result in higher

CE values than EM for datasets shorter than about 15 and

25, for the mean and field, respectively, indicating the

utility of the regularization.

With increasing series length, the regularization aspect

of RegEM becomes less necessary, as there is sufficient

data available to accurately estimate the covariance struc-

ture of the datasets. The CE values for the field become

higher for EM than for BARCAST(L) at about series

length 60, and by series length 100 the CE values for the

EM mean reconstruction are comparable to those for

BARCAST and BARCAST(L). As the series length

increases past about 50, the CE values for Ridge-M

begin to converge with those for EM. The ridge param-

eters(s) are picked adaptively by RegEM (see above)

and as the amount of data increases, RegEM selects

smaller and smaller regularization parameter(s), resulting

in reconstructions that are progressively closer to those

from EM.

Whereas the CE values for the BARCAST and T-TLS

reconstructions plateau before series length 100, the CE

values for the Ridge-M and EM reconstructions are

clearly still rising at series length 100. With sufficient

data, the EM approach and BARCAST should have

similar reconstructive skill, provided the datasets meet

the assumptions made by BARCAST about the spatial

covariance of the field. If the assumptions made by

BARCAST are incorrect, then with sufficient data the

EM algorithm should be more skillful, as can be seen at

series length 100 for the BARCAST(L) field recon-

struction (Fig. 1). Applying the EM algorithm to surro-

gate datasets of length 500 results in 25% trimmed mean

CE values of 0.70 for the mean and 0.52 for the field,

which are comparable to the values from BARCAST at

series length 100.

When applying these different methods to actual data,

a key constraint is the length of the overlap between

the proxy and instrumental datasets compared to the

number of time series (in the case of RegEM) or spatial

locations (in the case of BARCAST) involved in the

reconstruction. As a reference, the North American ex-

ample presented in Part I involved 163 spatial locations,

102 instrumental time series, 20 proxy time series, and

a 67 year overlap between the two types of data. In a real

reconstruction scenario for this area, the entire length

of the instrumental record would be used for calibration,

so the overlap between the two data types would in-

crease to about 157 years—about 1.2 times the number

of time series. While the number of time series, both

instrumental and proxy, increases as the spatial domain

of the reconstruction increases, the length of the overlap

tends to be capped at around 150 years by the length of

most instrumental records, so the ratio will decrease as

the domain expands.
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In many real applications, then, the number of years

for which both proxy and instrumental observations are

available will be at best slightly larger, and often smaller,

than the number of data time series. The relevant test of

the various algorithms is thus their performance when

the overlap between the proxy and instrumental obser-

vations is similar to or smaller than the number of lo-

cations involved in the reconstruction. The surrogate

datasets are composed of nine instrumental time series

and five proxy time series, while the overlap between the

two is half the length of the dataset. As such, dataset

lengths less than about 30 are comparable with actual

climate reconstruction problems. The simple examples

analyzed here suggest that in this range of dataset

lengths, both BARCAST and BARCAST(L) produce

higher CE values than RegEM (Fig. 1).

It is of course possible to set up a test where any

particular method results in the highest CE values. Vi-

olations of the assumptions made by BARCAST about

the spatial covariance structure are detrimental to the

reconstructive skill, and given a dataset with a covari-

ance structure sufficiently different from that assumed

by BARCAST, the RegEM approaches will result in the

most skillful reconstructions. In the context of climate

field reconstructions, the validity of the assumption that

covariance decays exponentially with distance will de-

pend on the particulars of the field and spatial domain

under consideration. Nonetheless, the BARCAST(L)

experiments indicate that BARCAST is robust to con-

siderable deviation from the assumptions made about

the covariance, at least in terms of the reconstruction of

the mean.

b. Temporal standard deviation of the
reconstructed mean

To investigate the influence of the proxy observational

errors on the estimated temporal standard deviation of

a reconstruction, we apply the various approaches to

surrogate datasets of length 80, with values of the proxy

SNR ranging from 0.25 to 3 (Fig. 2), where the SNR is

measured in terms of standard deviations. Datasets of

length 80 involve 40 years of overlap between the two

data types, so according to the discussion in section 4a

the ratio of years of overlap to numbers of locations is

somewhat larger than for many practical applications.

The main conclusions of this section are robust to the

length of the dataset, which is set to 80 to provide a

sufficiently long testing interval from which to estimate

temporal standard deviations and a calibration interval

that is sufficiently long to ensure the parameters of each

analysis scheme are well estimated. This allows us to

isolate the effects of varying the proxy SNR and to ex-

plore via simulations the issues discussed in section 3j

with regards to regression dilution in the presence of

FIG. 1. CE as a function of the length of the surrogate dataset, for a number of different reconstruction approaches. BARCAST and

BARCAST(L) refer to analysis with BARCAST with the datasets tagged with the correct and incorrect locations, respectively; T-TLS(1)

refers to truncated total least squares–regularized RegEM making use of one eigenmode of the joint covariance matrix; Ridge-M refers to

ridge-regularized RegEM with one regularization parameter calculated for each year for which there are missing observations; EM refers

to the unregularized EM algorithm. Results using T-TLS(2) are similar to those shown for T-TLS(1), and results for Ridge-I are similar to

those shown for Ridge-M. (a),(b) The CE for the reconstructions of the spatial mean; (c),(d) the CE for the reconstructions of the field.

Panels (a) and (c) show the first parts of panels (b) and (d), respectively, but with the y axes expanded to show how the algorithms differ

when applied to short datasets.

2794 J O U R N A L O F C L I M A T E VOLUME 23



errors in the predictor variables. Note that, in most

practical applications, the SNR will be below one (e.g.,

von Storch et al. 2009; Lee et al. 2008; Mann et al.

2007b); we include higher values to demonstrate how

differences in the results from the various methods be-

come less pronounced as the SNR increases.

For each proxy SNR we generate and analyze 100

surrogate datasets and calculate the temporal standard

deviation of the reconstructed mean between time

points 6 and 35 (recall that no instrumental observations

are available before the 41st time point). As BARCAST

models the temporal autocorrelation, values near the

beginning of the proxy or instrumental observations are

not used, as the estimates at these time points are af-

fected by nearby changes in data availability. We then

take the mean of the 100 standard deviation estimates at

each SNR (Fig. 2).

BARCAST and EM result in similar standard de-

viations, which, for small values of the SNR, are biased

low relative to the expected standard deviation of the

mean of the true values. The standard deviations ap-

proach the true values as the SNR increases, indicating

that, in the absence of proxy observational error, the

uncertainty in the mean across the nine target locations

is small. The standard deviation using BARCAST(L)

is smaller than that for BARCAST, indicating that the

model misspecification weakens the relationship be-

tween the proxy observations and the mean across the

target locations. T-TLS(1) results in larger standard

deviations estimates, which is to be expected as T-TLS

involves a correction for regression bias and therefore

produces larger estimates of the coefficients and pre-

dictions with higher variance. T-TLS drastically over-

estimates the standard deviation for small SNR values,

indicating that, in this range of the SNR, even the first

eigenvector is not well estimated by the data. Finally,

Ridge-M results in standard deviations lower or on

par with those from BARCAST(L). The low standard

deviations produced by Ridge-M are expected, as the

ridge parameter has a similar impact on the estimate

of the regression coefficients as do errors in the proxy

observations.

BARCAST, unlike RegEM, results in an ensemble of

draws of the space–time field (and the scalar parame-

ters) consistent with the model assumptions and data.

Provided the model is well specified and there is suffi-

cient data to constrain the scalar parameters, each of

these draws should have, on average, the same temporal

variance as the true values, regardless of the SNR. To

demonstrate this feature, we estimate the standard devi-

ation of the mean time series for each of a large number

of ensemble members for each realization of the surro-

gate dataset, and then take the mean of these estimated

standard deviations at each SNR (Fig. 2). As a compari-

son, we produce different sets of 100 realizations of the

surrogate dataset, each of length 30, calculate the spatial

FIG. 2. Temporal standard deviation of the reconstructed mean as a function of the proxy SNR, for a number of different reconstruction

approaches. (a) Temporal standard deviation of the reconstructed mean, calculated from 30 time steps during which only proxy obser-

vations are available. True field (all) refers to the expected value of the standard deviation of a length 30 realization of the underlying true

mean time series. Results using T-TLS(2) are similar to those shown for T-TLS1, and results for Ridge-I are similar to those shown for

Ridge-M. (b) The mean of the standard deviations of each of the ensemble members produced from applying BARCAST to each of 100

surrogate datasets at each SNR. True field (100) refers to the mean from estimating the standard deviation of different sets of 100

realizations, each of length 30, of the underlying true time series.
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mean of the true field values for each, and then calculate

the standard deviation of these time series. The mean

across these standard deviations for each set of 100 re-

alizations (Fig. 2) gives an indication of the expected

variability in estimating the population temporal stan-

dard deviation from 100 realizations of the true field,

each of length 30.

The temporal standard deviations of the ensemble

members produced by BARCAST are essentially con-

stant as a function of the proxy SNR, are centered on the

expected value, and display a variability comparable to

the estimates from realizations of the true mean time

series (Fig. 2). BARCAST(L), however, results in en-

semble members with standard deviations biased low

relative to the true values, with the discrepancy gener-

ally larger for lower values of the SNR. In practical

applications, we expect that the spatial covariance as-

sumptions inherent to BARCAST are at best an approx-

imation to the truth and so conclude that the ensemble

members produced in real applications will likely have

temporal standard deviations that are biased low, with the

extent of the bias a function of the proxy SNR and the

extent to which the assumed spatial covariance structure is

incorrect.

c. Confidence interval widths and coverage rate

To investigate the widths and coverage rates of the

90% confidence or credible intervals estimated by the

different methods, we use surrogate datasets of length

80 and vary the proxy SNR between 0.25 and 3. Ideally,

90% of the withheld values should fall within the 90%

uncertainty intervals, while the extents to which the

coverage rates differ from 90% are indications of biases

in the estimated intervals. For each of 100 surrogate

datasets at each signal SNR, we calculate the average

width of the confidence interval for imputing the missing

instrumental observations between time points 6 and 35

and then take the mean across these widths (Fig. 3a).

The confidence intervals for RegEM and EM are the

standard error estimates scaled by 2.71 (the distance

between the 5th and 95th percentiles of the standard

normal). The credible interval widths for BARCAST

are calculated by adding to each draw of the field white

noise with variance given by the corresponding draw of

tI
2, and then taking the distance between the 5th and

95th percentiles of the resulting distributions.

As both variants of RegEM require the specification

of a variance inflation factor, the widths and coverage

rates of the resulting confidence intervals are somewhat

arbitrary. We have chosen values of 1.1 for Ridge-M and

1.2 for T-TLS(1), as these give reasonable confidence

intervals for these trials and permit us to focus on how

the widths and coverage rates of the intervals vary as

a function of the proxy SNR.

For all methods save T-TLS(1), the width of the esti-

mated intervals for the missing instrumental observa-

tions decreases steadily as the SNR increases. T-TLS(1)

uses a single eigenvector of the joint covariance matrix

to predict the missing values, and the width of the esti-

mated uncertainty interval for the imputed instrumental

values does not vary with the SNR. BARCAST results

in narrower credible intervals for the imputed instru-

mental values than does BARCAST(L), while EM pro-

duces confidence intervals with nearly the same widths

as the credible intervals from BARCAST. The confi-

dence intervals from Ridge-M are wider than those from

BARCAST(L) for SNR values less than one, and are

narrower for larger values of the SNR.

The rates at which the estimated intervals cover the

missing instrumental values are relatively constant as

a function of the SNR, save for those produced by

T-TLS(1), which increase dramatically before reaching

a plateau at an SNR of about two (Fig. 3b). Compared to

the other methods, T-TLS(1) does not seem to capture

important behavior of the field (cf. Fig. 1d). The cover-

age rates for the intervals produced by EM are much

lower than 90%, which is a result of the covariance

matrix not being sufficiently well estimated from a da-

taset of length 80. Indeed, if the experiment is repeated

using a dataset of length 1000, the coverage rate of the

EM intervals for the missing instrumental values is the

stated 90%. The BARCAST and BARCAST(L) in-

tervals have coverage rates very close to 90%, while the

coverage rates of the wider Ridge-M intervals are gen-

erally just under 90%.

For EM and the various versions of RegEM, the rates

at which the estimated intervals cover the underlying

true field values are higher than those for the missing

instrumental values (Fig. 3c). This is to be expected, as

the instrumental values are more variable than the miss-

ing true values, and neither EM nor RegEM can adjust

the intervals to account for this distinction. The credible

intervals from BARCAST cover the true values nearly

90% of the time, regardless of the SNR, while the cov-

erage rates from BARCAST(L) are biased low. That the

intervals for BARCAST(L) are overly narrow is not

surprising, as they do not take into account the uncer-

tainty produced by model misspecification, in the form of

incorrect assumptions about the spatial covariance. Re-

call that BARCAST(L) generally overestimates the in-

strumental observational error (Table 1), and in this

particular case produces credible intervals for the missing

instrumental values with the correct coverage rate, de-

spite the model misspecification which biases the cover-

age rates for the true field values.
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5. Discussion and conclusions

BARCAST, as analyzed here and presented in Part I,

is a simple implementation of a general approach to the

analysis of climate data—a number of possible extensions

are discussed in Part I. Likewise, the various RegEM

implementations analyzed here should be considered as

simple implementations of a more general approach.

Alternative choices for the form of the matrix D [Eq. (3)]

when regularizing via ridge regression, for example, can

be used to enforce spatial smoothing or other charac-

teristics on the imputations of the missing values. In

addition, Schneider (2001) lists a number of extensions

to RegEM, including suggestions on how to incorporate

temporal correlations into the model. In this work, we

have focused on what we consider to be the simplest

implementation of BARCAST that is applicable to pa-

leoclimate reconstruction problems and the basic vari-

ants of the RegEM algorithm that have been used in the

analysis of proxy data (e.g., Rutherford et al. 2003, 2005;

Mann et al. 2007b; Steig et al. 2009; Zhang et al. 2004).

One of the more readily apparent differences between

the two methods concerns their treatment of covariance

matrices. Whereas BARCAST assumes a parametric

form for the spatial covariance of the field, RegEM is

based on an empirical estimate of the joint covariance

matrix of the proxy and instrumental observations. As

a result, RegEM can exploit any linear relationships

between the proxy and instrumental time series to im-

pute the missing instrumental values. In many practical

applications, however, the empirical covariance esti-

mates at the heart of RegEM will require some form of

regularization, as there is generally insufficient infor-

mation to adequately constrain these estimates. Both

ridge regression and T-TLS have been used to provide

the regularization in RegEM, and both of these tech-

niques can be interpreted in terms of prior constraints on

sample covariances matrices. In short, both BARCAST

and RegEM make use of prior information in estimating

the covariance matrix used in the analysis, but the prior

is more readily apparent in the BARCAST formalism.

There are many other differences between RegEM

and BARCAST, and we consider the inclusion of a tem-

poral model within BARCAST to be one of the most sig-

nificant, as this allows the estimates of the field for a given

year to be influenced by observations from neighboring

FIG. 3. Widths and coverage rates of estimated 90% uncertainty intervals as a function of the proxy SNR for a number of different

reconstruction approaches. (a) Average width of the estimated 90% confidence or credible intervals associated with the estimates of the

missing instrumental observations. The variance inflation was set to 1.1 for Ridge-M, and results are similar for Ridge-I. The variance

inflation was set to 1.2 for T-TLS(1), and results for T-TLS(2) have a similar shape but require a different variance inflation for the

coverage rates to be reasonable. (b) Percentage of the missing instrumental observations that fall within these 90% confidence or credible

intervals. If the estimated intervals are accurate, they should cover the missing values 90% of the time. (c) Percentage of the unobserved

true values which fall within the 90% confidence or credible intervals. Using the EM or RegEM approaches, the confidence intervals

themselves are the same as for (b). The credible intervals for BARCAST in this case are simply the 5th and 95th percentiles of the

ensemble of posterior draws of the field.

15 MAY 2010 T I N G L E Y A N D H U Y B E R S 2797



years. Another key distinction is that BARCAST pro-

duces an ensemble of draws of the spatially complete

field through time, each one of which is consistent with

the data and the modeling assumptions. This ensemble

allows for the investigation of novel questions and can

be used, for example, to estimate the probability that the

spatial mean for a given year was the warmest in the

interval covered by a reconstruction.

We have explored the impacts of the differing as-

sumptions made by RegEM and BARCAST using sim-

ple surrogate datasets and a number of measures of

the performance of the various methods. If the datasets

are generated according to the assumptions made by

BARCAST, then for the experiments we have conducted

BARCAST results in more skillful reconstructions than

does RegEM, as measured by the coefficient of efficiency

statistic. In addition, BARCAST produces narrower un-

certainty intervals with higher coverage rates, while the

ensemble members produced by BARCAST have, on

average, the same temporal standard deviation as the true

field values.

As it is unlikely that assumptions made by BARCAST

about the spatial covariance of the field are correct in any

given application, we also apply BARCAST to the sur-

rogate datasets after corrupting the spatial information to

violate those assumptions. The resulting reconstructions

are inferior to those that result from applying BARCAST

to the uncorrupted datasets. As measured by the co-

efficient of efficiency, however, these reconstructions re-

main superior to those from RegEM, at least for dataset

lengths comparable to realistic climate reconstruction

scenarios. BARCAST thus shows a certain robustness to

violations of the assumptions made about the covariance

of the field. Taken together with the demonstrations of

RegEM and BARCAST in Part I, these results suggest

that the assumptions made by BARCAST about the

spatial structure of the field under analysis do not prevent

the algorithm from arriving at reasonable results in re-

alistic situations.

The testing and intercomparison of different climate

field reconstruction methods is an ongoing area of re-

search, and more work must be done to fully charac-

terize the strengths and weaknesses of BARCAST and

other approaches. A number of studies have used pseu-

doproxies constructed from climate model output to assess

and compare the performance of climate reconstruction

methods (for a review of recent work, see Jones et al.

2009), and similar testing is needed to further assess the

performance of BARCAST in a wider range of situa-

tions. The description and demonstration of BARCAST

in Part I and the code package posted online should

facilitate the inclusion of BARCAST in future such

studies, while the theoretical discussions and analyses of

simple surrogate datasets presented here should facili-

tate the interpretation of results, and allow them to be

tied back to the fundamental assumptions of the methods.

Although more work is required to fully establish this

new approach, BARCAST appears to be a useful tool for

exploring the climate of the past.
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APPENDIX

Regression as Projection and a Ridge Regression
Example

The interpretation of the ridge procedure can be

clarified by thinking in terms of projections. Consider

the simplest regression formulation, where there is one

response variable Y and one predictor X, so that Y 5

Xb 1 �, where b is a scalar. The MLE of b is b̂ 5

(XTX)�1XTY, and the regression estimate of Y is then

Ŷ 5 X(XTX)�1XTY. Note that (XTX)1/2
[ jXj is the

length of X, and the unit vector in the direction of X is

Xu [ X/jXj. The regression estimate Ŷ has two parts: the

inner product between Y and Xu gives the length of the

projection of Y in the direction Xu, and this scalar is then

multiplied by the unit vector in the X direction. In the

more general context, where Y and/or X are matrices,

the term (XTX)�1/2XTY is the inner product between the

columns of Y and the unit vectors spanning the space of

the columns of X, and X(XTX)�1/2 then multiplies these

inner products by the unit vectors spanning the column

space of X.

The effects of the ridge parameter are readily un-

derstood in this geometric context. Consider the sim-

plest case when the columns of X are all orthogonal, so

that the matrix XTX is diagonal. The ridge parameter

scales up each diagonal element by some small factor.

This is akin to reducing the length of the unit vectors in

the directions of the columns of X, as the elements of

(XTX 1 h2Diag(XTX))�1 are reduced. Ergo, as discussed

in Hoerl and Kennard (1970), the ridge regression esti-

mate of b is shorter than the MLE. If several of the ei-

genvalues of XTX are zero or nearly so, then the inner

products between columns are nearly as large as the

squared norms of the columns. Adding a small amount
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to the diagonal of the covariance matrix inflates the

squared norms of the columns, ensuring that they are

larger than the inner products between columns. As

a concrete example, consider the case

X 5
1 1

0 0

� �
so that XTX 5

1 1

1 1

� �
, (A1)

which is singular. The ridge procedure adds a small

amount to the diagonal, proportional to the values on

the diagonal:

XTX 1 h2Diag(XTX) 5
1 1 h2 1

1 1 1 h2

 !
[ XT

r X
r
,

where (A2)

X
r
5

1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 h2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 h2

p
�h h

 !
. (A3)

In the limit h / 0, Xr reverts back to X. The effects of the

ridge procedure are now apparent: it adds to the col-

umns of X small perturbations, of opposite sign, in the

direction perpendicular to the colinear columns. The

vectors are lengthened (meaning that the estimate of

b will be shorter), and the colinearity is destroyed. In

general, the effect of the ridge parameter is to ‘‘spread

out’’ the columns of X, lengthening them and making

them closer to orthogonal.

A surface of constant uncertainty for a given two di-

mensional covariance matrix is an ellipse. In the case of

a singular covariance matrix such as that in Eq. (A1), the

semiminor axis is zero and the ellipse collapses into

a line. As h increases from zero, the ellipse begins to fill

out and become two-dimensional (Fig. A1).
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